Tight Junctions are Sensitive to Peptides Eliminated in the Urine

Tight Junctions are Sensitive to Peptides Eliminated in the Urine We prepare an extract of dog urine (DLU) that, when applied to monolayers of MDCK cells (epithelial, derived from a normal dog), enhances the transepithelial electrical resistance (TER) in a dose-dependent manner. This increase is not reflected in variations of the linear amount of TJ nor in changes of the pattern of junctional strands as observed in freeze fracture replicas, nor in the distribution of claudin 1 (a membrane protein of the TJ) nor ZO-1 (a TJ-associated protein). A preliminary characterization of the active component of DLU indicates that it weighs 30–50 kDa, bears a net negative electric charge, and is destroyed by type I protease but not by 10-min boiling. DLUs prepared from human, dog, rabbit and cat are effective on MDCK cells. However, dog DLU increases TER in MDCK (dog) as well as LLCPK1 (pig) monolayers, but not in other epithelial cell lines such as LLCRK1 (rabbit), PTK2 (kangaroo) and MA-104 (monkey), nor in the endothelial cell line CPA47 (cow). Given that in its transit from the glomerulus to the urinary bladder the filtrate increases its concentration by more than two orders of magnitude, the substance(s) we report may act at increasingly higher concentrations in each segment, and afford a potential clue to the progressive increase of TER across the walls of the nephron from the proximal to the collecting duct. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Tight Junctions are Sensitive to Peptides Eliminated in the Urine

Loading next page...
 
/lp/springer_journal/tight-junctions-are-sensitive-to-peptides-eliminated-in-the-urine-p5GOUbI5eR
Publisher
Springer Journals
Copyright
Copyright © 2002 by Springer-Verlag New York Inc.
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-001-0170-6
Publisher site
See Article on Publisher Site

Abstract

We prepare an extract of dog urine (DLU) that, when applied to monolayers of MDCK cells (epithelial, derived from a normal dog), enhances the transepithelial electrical resistance (TER) in a dose-dependent manner. This increase is not reflected in variations of the linear amount of TJ nor in changes of the pattern of junctional strands as observed in freeze fracture replicas, nor in the distribution of claudin 1 (a membrane protein of the TJ) nor ZO-1 (a TJ-associated protein). A preliminary characterization of the active component of DLU indicates that it weighs 30–50 kDa, bears a net negative electric charge, and is destroyed by type I protease but not by 10-min boiling. DLUs prepared from human, dog, rabbit and cat are effective on MDCK cells. However, dog DLU increases TER in MDCK (dog) as well as LLCPK1 (pig) monolayers, but not in other epithelial cell lines such as LLCRK1 (rabbit), PTK2 (kangaroo) and MA-104 (monkey), nor in the endothelial cell line CPA47 (cow). Given that in its transit from the glomerulus to the urinary bladder the filtrate increases its concentration by more than two orders of magnitude, the substance(s) we report may act at increasingly higher concentrations in each segment, and afford a potential clue to the progressive increase of TER across the walls of the nephron from the proximal to the collecting duct.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jul 1, 2002

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off