Tight bounds for the eavesdropping collective attacks on general CV-QKD protocols that involve non-maximally entanglement

Tight bounds for the eavesdropping collective attacks on general CV-QKD protocols that involve... A new method to quantify the eavesdropper’s accessible information on continuous variable quantum key distribution for protocols implementing homodyne and heterodyne detections is introduced. We have derived upper bounds for the eavesdropping collective attacks on general continuous variable quantum key distribution protocols. Our focus is especially on deriving bounds which are Gaussian optimal for Eve collective attacks that involve non maximally entanglement (i.e. Alice and Bob use non maximally entangled states or non-Gaussian modulation for their quantum key distribution protocols). The new bounds derived are tight for all continuous variable quantum key distribution protocols. We show that the eavesdropper’s accessible information is independent of the initial correlation between Alice and Bob modes in reverse reconciliation scheme, while in direct reconciliation scheme, Eve information is given as a function of Alice and Bob initial correlation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Tight bounds for the eavesdropping collective attacks on general CV-QKD protocols that involve non-maximally entanglement

Loading next page...
 
/lp/springer_journal/tight-bounds-for-the-eavesdropping-collective-attacks-on-general-cv-00dd8qD5gS
Publisher
Springer US
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-012-0457-9
Publisher site
See Article on Publisher Site

Abstract

A new method to quantify the eavesdropper’s accessible information on continuous variable quantum key distribution for protocols implementing homodyne and heterodyne detections is introduced. We have derived upper bounds for the eavesdropping collective attacks on general continuous variable quantum key distribution protocols. Our focus is especially on deriving bounds which are Gaussian optimal for Eve collective attacks that involve non maximally entanglement (i.e. Alice and Bob use non maximally entangled states or non-Gaussian modulation for their quantum key distribution protocols). The new bounds derived are tight for all continuous variable quantum key distribution protocols. We show that the eavesdropper’s accessible information is independent of the initial correlation between Alice and Bob modes in reverse reconciliation scheme, while in direct reconciliation scheme, Eve information is given as a function of Alice and Bob initial correlation.

Journal

Quantum Information ProcessingSpringer Journals

Published: Aug 4, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off