Thyroxine Exposure Effects on the Cranial Base

Thyroxine Exposure Effects on the Cranial Base Thyroid hormone is important for skull bone growth, which primarily occurs at the cranial sutures and synchondroses. Thyroid hormones regulate metabolism and act in all stages of cartilage and bone development and maintenance by interacting with growth hormone and regulating insulin-like growth factor. Aberrant thyroid hormone levels and exposure during development are exogenous factors that may exacerbate susceptibility to craniofacial abnormalities potentially through changes in growth at the synchondroses of the cranial base. To elucidate the direct effect of in utero therapeutic thyroxine exposure on the synchondroses in developing mice, we provided scaled doses of the thyroid replacement drug, levothyroxine, in drinking water to pregnant C57BL6 wild-type dams. The skulls of resulting pups were subjected to micro-computed tomography analysis revealing less bone volume relative to tissue volume in the synchondroses of mouse pups exposed in utero to levothyroxine. Histological assessment of the cranial base area indicated more active synchondroses as measured by metabolic factors including Igf1. The cranial base of the pups exposed to high levels of levothyroxine also contained more collagen fiber matrix and an increase in markers of bone formation. Such changes due to exposure to exogenous thyroid hormone may drive overall morphological changes. Thus, excess thyroid hormone exposure to the fetus during pregnancy may lead to altered craniofacial growth and increased risk of anomalies in offspring. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Calcified Tissue International Springer Journals

Loading next page...
 
/lp/springer_journal/thyroxine-exposure-effects-on-the-cranial-base-I5PI793awy
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Endocrinology; Orthopedics; Cell Biology
ISSN
0171-967X
eISSN
1432-0827
D.O.I.
10.1007/s00223-017-0278-z
Publisher site
See Article on Publisher Site

Abstract

Thyroid hormone is important for skull bone growth, which primarily occurs at the cranial sutures and synchondroses. Thyroid hormones regulate metabolism and act in all stages of cartilage and bone development and maintenance by interacting with growth hormone and regulating insulin-like growth factor. Aberrant thyroid hormone levels and exposure during development are exogenous factors that may exacerbate susceptibility to craniofacial abnormalities potentially through changes in growth at the synchondroses of the cranial base. To elucidate the direct effect of in utero therapeutic thyroxine exposure on the synchondroses in developing mice, we provided scaled doses of the thyroid replacement drug, levothyroxine, in drinking water to pregnant C57BL6 wild-type dams. The skulls of resulting pups were subjected to micro-computed tomography analysis revealing less bone volume relative to tissue volume in the synchondroses of mouse pups exposed in utero to levothyroxine. Histological assessment of the cranial base area indicated more active synchondroses as measured by metabolic factors including Igf1. The cranial base of the pups exposed to high levels of levothyroxine also contained more collagen fiber matrix and an increase in markers of bone formation. Such changes due to exposure to exogenous thyroid hormone may drive overall morphological changes. Thus, excess thyroid hormone exposure to the fetus during pregnancy may lead to altered craniofacial growth and increased risk of anomalies in offspring.

Journal

Calcified Tissue InternationalSpringer Journals

Published: Apr 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off