Thyroid Hormone Treatments Differentially Affect the Temperature Kinetics Properties of FoF1 ATPase and Succinate Oxidase as well as the Lipid/Phospholipid Profiles of Rat Kidney Mitochondria: A Correlative Study

Thyroid Hormone Treatments Differentially Affect the Temperature Kinetics Properties of FoF1... Effect of thyroidectomy (Tx) and subsequent treatment with 3,5,3′-triiodo-l-thyronine (T3) or replacement therapy (TR) with T3 + l-thyroxine (T4) on the temperature kinetics properties of FoF1 adenosine triphosphatase (ATPase, ATP synthase, H+-translocating ATP synthase EC 3.6.3.14) and succinate oxidase (SO) and on the lipid/phospholipid makeup of rat kidney mitochondria were examined. Tx lowered ATPase activity, which T3 treatment restored. SO activity was unchanged in Tx but decreased further by T3 treatment. TR restored both activities. The energies of ATPase activation in the high and low temperature ranges (E H and E L) increased in the Tx and T3 animals with decrease in phase transition temperature (Tt). TR restored E H and E L but not Tt to euthyroid levels. E H and E L of SO decreased in Tx animals. T3 and TR restored E H whereas E L was restored only in the TR group; Tt increased in both groups. Total phospholipid and cholesterol contents decreased significantly in Tx and T3-treated animals. In Tx animals, sphingomyelin (SPM) and phosphatidylcholine (PC) components decreased, while phosphatidylserine (PS) and diphosphatidylglycerol components increased. T3 and TR treatments caused decreases in SPM, phosphatidylinositol and PS. PC and phosphatidylethanolamine (PE) increased in the T3 group. TR resulted in increased lysophospolipids and PE. Changes in kinetic parameters of the two enzymes were differently correlated with specific phospholipid components. Both T3 and TR regimens were unable to restore normal membrane structure-function relationships. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Thyroid Hormone Treatments Differentially Affect the Temperature Kinetics Properties of FoF1 ATPase and Succinate Oxidase as well as the Lipid/Phospholipid Profiles of Rat Kidney Mitochondria: A Correlative Study

Loading next page...
 
/lp/springer_journal/thyroid-hormone-treatments-differentially-affect-the-temperature-WBx3WpZO4j
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-007-9013-4
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial