Thymoquinone loaded solid lipid nanoparticles counteracts 3-Nitropropionic acid induced motor impairments and neuroinflammation in rat model of Huntington’s disease

Thymoquinone loaded solid lipid nanoparticles counteracts 3-Nitropropionic acid induced motor... Defect in gene transcription, excitotoxicity, neuroinflammation and oxidative stress are the dominant disease process that causes striatal cell loss with motor abnormalities in Huntington’s disease (HD). Homogeneous pathological reminiscent of HD was extrapolated in the present study using a potent mitochondrial toxin, 3-Nitropropionic acid (3-NP). Administration of 3-NP for 14 days in the present study portends glial cell activation, N-methyl-D-aspartate (NMDA) receptor stimulation, neuroinflammation and motor deficits. The therapeutic strategy in the present study was improvised by formulating thymoquinone, a biologically active compound into a colloidal carrier namely solid lipid nanoparticles. Treatment with 10 and 20 mg/kg b.w of thymoquinone loaded solid lipid nanoparticles (TQ-SLNs) and 80 mg/kg b.w of thymoquinone suspension (TQ-S) showed a significant (P < 0.01) improvement in ATPases function in 3-NP induced animals than TQ-S (40 mg/kg b.w) treated group. TQ-SLNs (10 and 20 mg/kg) treatment also attenuated the overexpression of glial fibrillary acidic protein (GFAP), pro-inflammatory cytokines and p-p65 NFκB nuclear translocation in 3-NP exposed animals. Further, TQ-SLNs treatment desensitizes NR2B-subtype NMDA receptor, improves tyrosine hydroxylase (TH) immune reactive neurons and ameliorated the motor abnormalities in 3-NP intoxicated animals than TQ-S treated group. Hence, the study signifies that the treatment with lower doses of nanoformulated thymoquinone than thymoquinone suspension can efficiently culminate 3-NP induced HD progression in the striatum of male wistar rats. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Metabolic Brain Disease Springer Journals

Thymoquinone loaded solid lipid nanoparticles counteracts 3-Nitropropionic acid induced motor impairments and neuroinflammation in rat model of Huntington’s disease

Loading next page...
 
/lp/springer_journal/thymoquinone-loaded-solid-lipid-nanoparticles-counteracts-3-2hUKErvxA4
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Biomedicine; Neurosciences; Neurology; Metabolic Diseases; Biochemistry, general; Oncology
ISSN
0885-7490
eISSN
1573-7365
D.O.I.
10.1007/s11011-018-0252-0
Publisher site
See Article on Publisher Site

Abstract

Defect in gene transcription, excitotoxicity, neuroinflammation and oxidative stress are the dominant disease process that causes striatal cell loss with motor abnormalities in Huntington’s disease (HD). Homogeneous pathological reminiscent of HD was extrapolated in the present study using a potent mitochondrial toxin, 3-Nitropropionic acid (3-NP). Administration of 3-NP for 14 days in the present study portends glial cell activation, N-methyl-D-aspartate (NMDA) receptor stimulation, neuroinflammation and motor deficits. The therapeutic strategy in the present study was improvised by formulating thymoquinone, a biologically active compound into a colloidal carrier namely solid lipid nanoparticles. Treatment with 10 and 20 mg/kg b.w of thymoquinone loaded solid lipid nanoparticles (TQ-SLNs) and 80 mg/kg b.w of thymoquinone suspension (TQ-S) showed a significant (P < 0.01) improvement in ATPases function in 3-NP induced animals than TQ-S (40 mg/kg b.w) treated group. TQ-SLNs (10 and 20 mg/kg) treatment also attenuated the overexpression of glial fibrillary acidic protein (GFAP), pro-inflammatory cytokines and p-p65 NFκB nuclear translocation in 3-NP exposed animals. Further, TQ-SLNs treatment desensitizes NR2B-subtype NMDA receptor, improves tyrosine hydroxylase (TH) immune reactive neurons and ameliorated the motor abnormalities in 3-NP intoxicated animals than TQ-S treated group. Hence, the study signifies that the treatment with lower doses of nanoformulated thymoquinone than thymoquinone suspension can efficiently culminate 3-NP induced HD progression in the striatum of male wistar rats.

Journal

Metabolic Brain DiseaseSpringer Journals

Published: May 31, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off