Thrust measurements and flow field analysis of a piezoelectrically actuated oscillating cantilever

Thrust measurements and flow field analysis of a piezoelectrically actuated oscillating cantilever Although not identical to the motion employed by nature’s swimmers and flyers, the simple harmonic oscillations of cantilever-like structures have been shown to provide efficient low-power solutions for applications ranging from thermal management to propulsion. However, in order to quantify their true potential, the resulting flow field and corresponding thrust must be better understood. In this work, a thin, flexible cantilever is actuated via a piezoelectric patch mounted near its base and caused to vibrate in its first resonance mode in air. The flow field is experimentally measured with particle image velocimetry while the thrust produced from the oscillatory motion is quantified using a high-resolution scale. The trends observed in the data are captured using an oscillating Reynolds number, and a clear relationship is defined between the operating parameters and the resulting thrust. Two-dimensional flow fields are extracted from the x–y and y–z planes and are primarily used to motivate future geometry and sidewall configurations that could greatly enhance the thrust capabilities of the cantilever by directing the flow downstream in a more effective manner. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Thrust measurements and flow field analysis of a piezoelectrically actuated oscillating cantilever

Loading next page...
 
/lp/springer_journal/thrust-measurements-and-flow-field-analysis-of-a-piezoelectrically-byd3xLklDk
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-012-1373-6
Publisher site
See Article on Publisher Site

Abstract

Although not identical to the motion employed by nature’s swimmers and flyers, the simple harmonic oscillations of cantilever-like structures have been shown to provide efficient low-power solutions for applications ranging from thermal management to propulsion. However, in order to quantify their true potential, the resulting flow field and corresponding thrust must be better understood. In this work, a thin, flexible cantilever is actuated via a piezoelectric patch mounted near its base and caused to vibrate in its first resonance mode in air. The flow field is experimentally measured with particle image velocimetry while the thrust produced from the oscillatory motion is quantified using a high-resolution scale. The trends observed in the data are captured using an oscillating Reynolds number, and a clear relationship is defined between the operating parameters and the resulting thrust. Two-dimensional flow fields are extracted from the x–y and y–z planes and are primarily used to motivate future geometry and sidewall configurations that could greatly enhance the thrust capabilities of the cantilever by directing the flow downstream in a more effective manner.

Journal

Experiments in FluidsSpringer Journals

Published: Sep 5, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off