Three years of soil respiration in a mature eucalypt woodland exposed to atmospheric CO2 enrichment

Three years of soil respiration in a mature eucalypt woodland exposed to atmospheric CO2 enrichment The rate of CO2 diffusion from soils to the atmosphere (soil CO2 efflux, soil respiration; Rsoil) reflects the integrated activity of roots and microbes and is among the largest fluxes of the terrestrial global C cycle. Most experiments have demonstrated that Rsoil increases by 20–35% following the exposure of an ecosystem to an atmosphere enriched in CO2 (i.e., eCO2), but such experiments have largely been performed in young and N-limited ecosystems. Here, we exposed a mature and phosphorus-limited eucalypt woodland to eCO2 and measured Rsoil across three full years with a combination of manual surveys and automated measurements. We also implemented an empirical model describing the dependence of Rsoil on volumetric soil water content (θ) and soil temperature (Tsoil) to produce annual Rsoil flux estimates. Rsoil varied strongly with Tsoil, θ, and precipitation in complex and interacting ways. The realized long-term (weeks to years) temperature dependence (Q10) of Rsoil increased from ~ 1.6 at low θ up to ~ 3 at high θ. Additionally, Rsoil responded strongly and rapidly to precipitation events in a manner that depended on the conditions of θ and Tsoil at the beginning of the rain event; Rsoil increased by up to 300% within 30 min when rain fell on dry soil that had not experience rain in the preceding week, but Rsoil was rapidly reduced by up to 70% when rain fell on wet soil, leading to flooding. Repeated measures analysis of Rsoil observations over 3 years indicated no significant change in response to CO2 enrichment (P = 0.7), and elevated CO2 did not alter the dependence of Rsoil on Tsoil or θ. However, eCO2 increased Rsoil observations by ~ 10% under some constrained and moderate environmental conditions. Annual Rsoil flux sums estimated with an empirical model were ~ 7% higher in eCO2 plots than in aCO2 plots, but this difference was not statistically significant. The lack of a large eCO2 effect on Rsoil is consistent with recent evidence that aboveground net primary production was not stimulated by eCO2 in this ecosystem. The C budget of this mature woodland may be less affected by eCO2 than the young N-limited ecosystems that have been studied previously. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biogeochemistry Springer Journals

Three years of soil respiration in a mature eucalypt woodland exposed to atmospheric CO2 enrichment

Loading next page...
 
/lp/springer_journal/three-years-of-soil-respiration-in-a-mature-eucalypt-woodland-exposed-XXx9KkMSrj
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer International Publishing AG, part of Springer Nature
Subject
Earth Sciences; Biogeosciences; Ecosystems; Environmental Chemistry; Life Sciences, general
ISSN
0168-2563
eISSN
1573-515X
D.O.I.
10.1007/s10533-018-0457-7
Publisher site
See Article on Publisher Site

Abstract

The rate of CO2 diffusion from soils to the atmosphere (soil CO2 efflux, soil respiration; Rsoil) reflects the integrated activity of roots and microbes and is among the largest fluxes of the terrestrial global C cycle. Most experiments have demonstrated that Rsoil increases by 20–35% following the exposure of an ecosystem to an atmosphere enriched in CO2 (i.e., eCO2), but such experiments have largely been performed in young and N-limited ecosystems. Here, we exposed a mature and phosphorus-limited eucalypt woodland to eCO2 and measured Rsoil across three full years with a combination of manual surveys and automated measurements. We also implemented an empirical model describing the dependence of Rsoil on volumetric soil water content (θ) and soil temperature (Tsoil) to produce annual Rsoil flux estimates. Rsoil varied strongly with Tsoil, θ, and precipitation in complex and interacting ways. The realized long-term (weeks to years) temperature dependence (Q10) of Rsoil increased from ~ 1.6 at low θ up to ~ 3 at high θ. Additionally, Rsoil responded strongly and rapidly to precipitation events in a manner that depended on the conditions of θ and Tsoil at the beginning of the rain event; Rsoil increased by up to 300% within 30 min when rain fell on dry soil that had not experience rain in the preceding week, but Rsoil was rapidly reduced by up to 70% when rain fell on wet soil, leading to flooding. Repeated measures analysis of Rsoil observations over 3 years indicated no significant change in response to CO2 enrichment (P = 0.7), and elevated CO2 did not alter the dependence of Rsoil on Tsoil or θ. However, eCO2 increased Rsoil observations by ~ 10% under some constrained and moderate environmental conditions. Annual Rsoil flux sums estimated with an empirical model were ~ 7% higher in eCO2 plots than in aCO2 plots, but this difference was not statistically significant. The lack of a large eCO2 effect on Rsoil is consistent with recent evidence that aboveground net primary production was not stimulated by eCO2 in this ecosystem. The C budget of this mature woodland may be less affected by eCO2 than the young N-limited ecosystems that have been studied previously.

Journal

BiogeochemistrySpringer Journals

Published: May 31, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off