Three-player quantum Kolkata restaurant problem under decoherence

Three-player quantum Kolkata restaurant problem under decoherence Effect of quantum decoherence in a three-player quantum Kolkata restaurant problem is investigated using tripartite entangled qutrit states. Different qutrit channels such as, amplitude damping, depolarizing, phase damping, trit-phase flip and phase flip channels are considered to analyze the behaviour of players payoffs. It is seen that Alice’s payoff is heavily influenced by the amplitude damping channel as compared to the depolarizing and flipping channels. However, for higher level of decoherence, Alice’s payoff is strongly affected by depolarizing noise. Whereas the behaviour of phase damping channel is symmetrical around 50% decoherence. It is also seen that for maximum decoherence (p = 1), the influence of amplitude damping channel dominates over depolarizing and flipping channels. Whereas, phase damping channel has no effect on the Alice’s payoff. Therefore, the problem becomes noiseless at maximum decoherence in case of phase damping channel. Furthermore, the Nash equilibrium of the problem does not change under decoherence. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Three-player quantum Kolkata restaurant problem under decoherence

Loading next page...
 
/lp/springer_journal/three-player-quantum-kolkata-restaurant-problem-under-decoherence-b11p3i6f3O
Publisher
Springer US
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-012-0405-8
Publisher site
See Article on Publisher Site

Abstract

Effect of quantum decoherence in a three-player quantum Kolkata restaurant problem is investigated using tripartite entangled qutrit states. Different qutrit channels such as, amplitude damping, depolarizing, phase damping, trit-phase flip and phase flip channels are considered to analyze the behaviour of players payoffs. It is seen that Alice’s payoff is heavily influenced by the amplitude damping channel as compared to the depolarizing and flipping channels. However, for higher level of decoherence, Alice’s payoff is strongly affected by depolarizing noise. Whereas the behaviour of phase damping channel is symmetrical around 50% decoherence. It is also seen that for maximum decoherence (p = 1), the influence of amplitude damping channel dominates over depolarizing and flipping channels. Whereas, phase damping channel has no effect on the Alice’s payoff. Therefore, the problem becomes noiseless at maximum decoherence in case of phase damping channel. Furthermore, the Nash equilibrium of the problem does not change under decoherence.

Journal

Quantum Information ProcessingSpringer Journals

Published: Apr 6, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off