Three-particle Bell-like inequalities under Lorentz transformations

Three-particle Bell-like inequalities under Lorentz transformations We study the effects of Lorentz transformations on three-particle nonlocal system states (GHZ and W) of spin 1/2 particles, using the Pauli spin operator and a three-particle generalization of Bell’s inequality, introduced by Svetlichny. In our setup, the moving and laboratory frames used the (same) set of measurement directions that maximally violate Svetlichny’s inequality in the laboratory frame. We also investigate the behavior of Mermin’s and Collins’ inequalities. We find that, regardless of the particles’ type of entanglement, violation of Svetlichny’s inequality in the moving frame is decreased by increasing the boost velocity and the energy of particles in the laboratory frame. In the relativistic regime, Svetlichny’s inequality is a good criterion to investigate the nonlocality of the GHZ state. We also find that Mermin’s and Collins’ inequalities lead to reasonable predictions, in agreement with the behavior of the spin state, about nonlocality of the W state in the relativistic regime. Then, comparing our results with those in which Czachor’s relativistic spin is used instead of the Pauli operator, we find that the results obtained by considering the Pauli spin operator are in better agreement with the behavior of spin state of the system in the relativistic information theory. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Three-particle Bell-like inequalities under Lorentz transformations

Loading next page...
 
/lp/springer_journal/three-particle-bell-like-inequalities-under-lorentz-transformations-wkrbITs2zi
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-015-1064-3
Publisher site
See Article on Publisher Site

References

  • Can quantum-mechanical description of physical reality be considered complete?
    Einstein, E; Podolsky, B; Rosen, N
  • On hidden variables and quantum mechanical probabilities
    Wigner, EP

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial