Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Three-dimensional temporally resolved measurements of turbulence–flame interactions using orthogonal-plane cinema-stereoscopic PIV

Three-dimensional temporally resolved measurements of turbulence–flame interactions using... A new orthogonal-plane cinema-stereoscopic particle image velocimetry (OPCS-PIV) diagnostic has been used to measure the dynamics of three-dimensional turbulence–flame interactions. The diagnostic employed two orthogonal PIV planes, with one aligned perpendicular and one aligned parallel to the streamwise flow direction. In the plane normal to the flow, temporally resolved slices of the nine-component velocity gradient tensor were determined using Taylor’s hypothesis. Volumetric reconstruction of the 3D turbulence was performed using these slices. The PIV plane parallel to the streamwise flow direction was then used to measure the evolution of the turbulence; the path and strength of 3D turbulent structures as they interacted with the flame were determined from their image in this second plane. Structures of both vorticity and strain-rate magnitude were extracted from the flow. The geometry of these structures agreed well with predictions from direct numerical simulations. The interaction of turbulent structures with the flame also was observed. In three dimensions, these interactions had complex geometries that could not be reflected in either planar measurements or simple flame–vortex configurations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Three-dimensional temporally resolved measurements of turbulence–flame interactions using orthogonal-plane cinema-stereoscopic PIV

Loading next page...
 
/lp/springer_journal/three-dimensional-temporally-resolved-measurements-of-turbulence-flame-ZRfzBBZRLq

References (56)

Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
DOI
10.1007/s00348-009-0677-7
Publisher site
See Article on Publisher Site

Abstract

A new orthogonal-plane cinema-stereoscopic particle image velocimetry (OPCS-PIV) diagnostic has been used to measure the dynamics of three-dimensional turbulence–flame interactions. The diagnostic employed two orthogonal PIV planes, with one aligned perpendicular and one aligned parallel to the streamwise flow direction. In the plane normal to the flow, temporally resolved slices of the nine-component velocity gradient tensor were determined using Taylor’s hypothesis. Volumetric reconstruction of the 3D turbulence was performed using these slices. The PIV plane parallel to the streamwise flow direction was then used to measure the evolution of the turbulence; the path and strength of 3D turbulent structures as they interacted with the flame were determined from their image in this second plane. Structures of both vorticity and strain-rate magnitude were extracted from the flow. The geometry of these structures agreed well with predictions from direct numerical simulations. The interaction of turbulent structures with the flame also was observed. In three dimensions, these interactions had complex geometries that could not be reflected in either planar measurements or simple flame–vortex configurations.

Journal

Experiments in FluidsSpringer Journals

Published: May 24, 2009

There are no references for this article.