Three dimensional spatial memory and learning in real and virtual environments

Three dimensional spatial memory and learning in real and virtual environments Human orientation and spatial cognition partlydepends on our ability to remember sets ofvisual landmarks and imagine their relationshipto us from a different viewpoint. We normallymake large body rotations only about a singleaxis which is aligned with gravity. However,astronauts who try to recognize environmentsrotated in 3 dimensions report that theirterrestrial ability to imagine the relativeorientation of remembered landmarks does noteasily generalize. The ability of humansubjects to learn to mentally rotate a simplearray of six objects around them was studied in1-G laboratory experiments. Subjects weretested in a cubic chamber (n = 73) and aequivalent virtual environment (n = 24),analogous to the interior of a space stationnode module. A picture of an object waspresented at the center of each wall. Subjectshad to memorize the spatial relationships amongthe six objects and learn to predict thedirection to a specific object if their bodywere in a specified 3D orientation. Percentcorrect learning curves and response times weremeasured. Most subjects achieved high accuracyfrom a given viewpoint within 20 trials,regardless of roll orientation, and learned asecond view direction with equal or greaterease. Performance of the subject group thatused a head mounted display/head tracker wasqualitatively similar to that of the secondgroup tested in a physical node simulator. Body position with respect to gravity had asignificant but minor effect on performance ofeach group, suggesting that results may alsoapply to weightless situations. A correlationwas found between task performance measures andconventional paper-and-pencil tests of fieldindependence and 2&3 dimensional figurerotation ability. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Spatial Cognition and Computation Springer Journals

Three dimensional spatial memory and learning in real and virtual environments

Loading next page...
 
/lp/springer_journal/three-dimensional-spatial-memory-and-learning-in-real-and-virtual-6FQH0KMXqg
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2000 by Kluwer Academic Publishers
Subject
Psychology; Cognitive Psychology
ISSN
1387-5868
eISSN
1573-9252
D.O.I.
10.1023/A:1015548105563
Publisher site
See Article on Publisher Site

Abstract

Human orientation and spatial cognition partlydepends on our ability to remember sets ofvisual landmarks and imagine their relationshipto us from a different viewpoint. We normallymake large body rotations only about a singleaxis which is aligned with gravity. However,astronauts who try to recognize environmentsrotated in 3 dimensions report that theirterrestrial ability to imagine the relativeorientation of remembered landmarks does noteasily generalize. The ability of humansubjects to learn to mentally rotate a simplearray of six objects around them was studied in1-G laboratory experiments. Subjects weretested in a cubic chamber (n = 73) and aequivalent virtual environment (n = 24),analogous to the interior of a space stationnode module. A picture of an object waspresented at the center of each wall. Subjectshad to memorize the spatial relationships amongthe six objects and learn to predict thedirection to a specific object if their bodywere in a specified 3D orientation. Percentcorrect learning curves and response times weremeasured. Most subjects achieved high accuracyfrom a given viewpoint within 20 trials,regardless of roll orientation, and learned asecond view direction with equal or greaterease. Performance of the subject group thatused a head mounted display/head tracker wasqualitatively similar to that of the secondgroup tested in a physical node simulator. Body position with respect to gravity had asignificant but minor effect on performance ofeach group, suggesting that results may alsoapply to weightless situations. A correlationwas found between task performance measures andconventional paper-and-pencil tests of fieldindependence and 2&3 dimensional figurerotation ability.

Journal

Spatial Cognition and ComputationSpringer Journals

Published: Oct 16, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off