Three-dimensional reconstruction of cardiac flows based on multi-planar velocity fields

Three-dimensional reconstruction of cardiac flows based on multi-planar velocity fields Measurement of the three-dimensional flow field inside the cardiac chambers has proven to be a challenging task. This is mainly due to the fact that generalized full-volume velocimetry techniques cannot be easily implemented to the heart chambers. In addition, the rapid pace of the events in the heart does not allow for accurate real-time flow measurements in 3D using imaging modalities such as magnetic resonance imaging, which neglects the transient variations of the flow due to averaging of the flow over multiple heartbeats. In order to overcome these current limitations, we introduce a multi-planar velocity reconstruction approach that can characterize 3D incompressible flows based on the reconstruction of 2D velocity fields. Here, two-dimensional, two-component velocity fields acquired on multiple perpendicular planes are reconstructed into a 3D velocity field through Kriging interpolation and by imposing the incompressibility constraint. Subsequently, the scattered experimental data are projected into a divergence-free vector field space using a fractional step approach. We validate the method in exemplary 3D flows, including the Hill’s spherical vortex and a numerically simulated flow downstream of a 3D orifice. During the process of validation, different signal-to-noise ratios are introduced to the flow field, and the method’s performance is assessed accordingly. The results show that as the signal-to-noise ratio decreases, the corrected velocity field significantly improves. The method is also applied to the experimental flow inside a mock model of the heart’s right ventricle. Taking advantage of the periodicity of the flow, multiple 2D velocity fields in multiple perpendicular planes at different locations of the mock model are measured while being phase-locked for the 3D reconstruction. The results suggest the metamorphosis of the original transvalvular vortex, which forms downstream of the inlet valve during the early filling phase of the right ventricular model, into a streamline single-leg vortex extending toward the outlet. Experiments in Fluids Springer Journals

Three-dimensional reconstruction of cardiac flows based on multi-planar velocity fields

Loading next page...
Springer Berlin Heidelberg
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial