Three-dimensional particle tracking around microstructures in water via total internal reflection fluorescence microscopy and refractive-index-matching method

Three-dimensional particle tracking around microstructures in water via total internal reflection... Multilayer nanoparticle image velocimetry (MnPIV) with a refractive-index-matching method is powerful technique for x–y–z (3D) flow measurement, because it can detect the 3D position of fluorescent particles with submicron resolution. In MnPIV, the intensity of fluorescence of a particle is used to estimate its z-position. However, it has been difficult to measure 3D flows around microstructures in water by total internal reflection fluorescence microscopy because of light scattering caused by the different refractive indices of the structures and the working fluid. By using a thermal nanoimprinting technique, we succeeded in fabricating microstructures from a polymer resin whose refractive index is equal to that of water, and we used these microstructures to perform MnPIV in water. As a result of the match between the refractive index of water and that of the microstructures, we were able to perform 3D tracking of nanoparticles around the microstructures in water. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Three-dimensional particle tracking around microstructures in water via total internal reflection fluorescence microscopy and refractive-index-matching method

Loading next page...
 
/lp/springer_journal/three-dimensional-particle-tracking-around-microstructures-in-water-hZeYCBU35z
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-016-2205-x
Publisher site
See Article on Publisher Site

Abstract

Multilayer nanoparticle image velocimetry (MnPIV) with a refractive-index-matching method is powerful technique for x–y–z (3D) flow measurement, because it can detect the 3D position of fluorescent particles with submicron resolution. In MnPIV, the intensity of fluorescence of a particle is used to estimate its z-position. However, it has been difficult to measure 3D flows around microstructures in water by total internal reflection fluorescence microscopy because of light scattering caused by the different refractive indices of the structures and the working fluid. By using a thermal nanoimprinting technique, we succeeded in fabricating microstructures from a polymer resin whose refractive index is equal to that of water, and we used these microstructures to perform MnPIV in water. As a result of the match between the refractive index of water and that of the microstructures, we were able to perform 3D tracking of nanoparticles around the microstructures in water.

Journal

Experiments in FluidsSpringer Journals

Published: Jun 28, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off