Three-dimensional microscopic light field particle image velocimetry

Three-dimensional microscopic light field particle image velocimetry A microscopic particle image velocimetry ( $$\mu \text {PIV}$$ μ PIV ) technique is developed based on light field microscopy and is applied to flow through a microchannel containing a backward-facing step. The only hardware difference from a conventional $$\mu$$ μ PIV setup is the placement of a microlens array at the intermediate image plane of the microscope. The method combines this optical hardware alteration with post-capture computation to enable 3D reconstruction of particle fields. From these particle fields, we measure three-component velocity fields, but find that accurate velocity measurements are limited to the two in-plane components at discrete depths through the volume (i.e., 2C-3D). Results are compared with a computational fluid dynamics simulation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Three-dimensional microscopic light field particle image velocimetry

Loading next page...
 
/lp/springer_journal/three-dimensional-microscopic-light-field-particle-image-velocimetry-zq00WHcVxT
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-016-2297-3
Publisher site
See Article on Publisher Site

Abstract

A microscopic particle image velocimetry ( $$\mu \text {PIV}$$ μ PIV ) technique is developed based on light field microscopy and is applied to flow through a microchannel containing a backward-facing step. The only hardware difference from a conventional $$\mu$$ μ PIV setup is the placement of a microlens array at the intermediate image plane of the microscope. The method combines this optical hardware alteration with post-capture computation to enable 3D reconstruction of particle fields. From these particle fields, we measure three-component velocity fields, but find that accurate velocity measurements are limited to the two in-plane components at discrete depths through the volume (i.e., 2C-3D). Results are compared with a computational fluid dynamics simulation.

Journal

Experiments in FluidsSpringer Journals

Published: Feb 11, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off