Three dimensional metal/N-doped nanoplate carbon catalysts for oxygen reduction, the reason for using a layered nanoreactor

Three dimensional metal/N-doped nanoplate carbon catalysts for oxygen reduction, the reason for... A layered nanoreactor (zinc hydroxide gallate/nitrate nanohybrid) has been designed as a nano-vessel to confine the gallate/nitrate reaction inside zinc hydroxide layers for production of metal/nitrogen-doped carbon catalysts. Metals (Fe2+, Co2+ and Ni2+) doped and bare zinc hydroxide nitrates (ZHN) were synthesized as the α-phase hydroxide hosts. By an incomplete ion-exchange process, nitrate anions between the layers of the hosts were then partially replaced by the gallate anions to produce the layered nanoreactors. Under heat-treatment, the reaction between the remaining un-exchanged nitrate anions and the organic moiety inside the basal spacing of each nanohybrid plate resulted in obtaining highly porous 3D metal/nitrogen-doped carbon nanosheets. These catalysts were then used as extremely efficient electrocatalysts for catalyzing oxygen reduction reaction (ORR). This study is intended to show the way to get maximum electrocatalytic activity of the metal/N-doped carbon catalysts toward the ORR. This exceptionally high ORR performance originates from the increased available surface, the best pore size range and the uniform distribution of the active sites in the produced catalysts, all provided by the use of new idea of the layered nanoreactor. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

Three dimensional metal/N-doped nanoplate carbon catalysts for oxygen reduction, the reason for using a layered nanoreactor

Loading next page...
 
/lp/springer_journal/three-dimensional-metal-n-doped-nanoplate-carbon-catalysts-for-oxygen-97HFRlFSjH
Publisher
Nature Publishing Group UK
Copyright
Copyright © 2018 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-018-21782-3
Publisher site
See Article on Publisher Site

Abstract

A layered nanoreactor (zinc hydroxide gallate/nitrate nanohybrid) has been designed as a nano-vessel to confine the gallate/nitrate reaction inside zinc hydroxide layers for production of metal/nitrogen-doped carbon catalysts. Metals (Fe2+, Co2+ and Ni2+) doped and bare zinc hydroxide nitrates (ZHN) were synthesized as the α-phase hydroxide hosts. By an incomplete ion-exchange process, nitrate anions between the layers of the hosts were then partially replaced by the gallate anions to produce the layered nanoreactors. Under heat-treatment, the reaction between the remaining un-exchanged nitrate anions and the organic moiety inside the basal spacing of each nanohybrid plate resulted in obtaining highly porous 3D metal/nitrogen-doped carbon nanosheets. These catalysts were then used as extremely efficient electrocatalysts for catalyzing oxygen reduction reaction (ORR). This study is intended to show the way to get maximum electrocatalytic activity of the metal/N-doped carbon catalysts toward the ORR. This exceptionally high ORR performance originates from the increased available surface, the best pore size range and the uniform distribution of the active sites in the produced catalysts, all provided by the use of new idea of the layered nanoreactor.

Journal

Scientific ReportsSpringer Journals

Published: Feb 21, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off