Three-dimensional flow structures and unsteady forces on pitching and surging revolving flat plates

Three-dimensional flow structures and unsteady forces on pitching and surging revolving flat plates Tomographic particle image velocimetry was used to explore the evolution of three-dimensional flow structures of revolving low-aspect-ratio flat plates in combination with force measurements at a Reynolds number of 10,000. Two motion kinematics are compared that result in the same terminal condition (revolution with constant angular velocity and $$45^{\circ }$$ 45 ∘ angle of attack) but differ in the motion during the buildup phase: pitching while revolving at a constant angular velocity; or surging with a constant acceleration at a fixed angle of attack. Comparison of force histories shows that the pitching wing generates considerably higher forces during the buildup phase which is also predicted by a quasi-steady model quite accurately. The difference in the buildup phases affects the force histories until six chords of travel after the end of buildup phase. In both cases, a vortex system that is comprised of a leading-edge vortex (LEV), a tip vortex and a trailing edge vortex is formed during the initial period of the motion. The LEV lifts off, forms an arch-shaped structure and bursts into substructures, which occur at slightly different phases of the motions, such that the revolving–surging wing flow evolution precedes that of the revolving–pitching wing. The delay is shown to be in accordance with the behavior of the spanwise flow which is affected by the interaction between the tip vortex and revolving dynamics. Further analysis shows that the enhanced force generation of the revolving–pitching wing during the pitch-up phase originates from: (1) increased magnitude and growth rate of the LEV circulation; (2) relatively favorable position and trajectory of the LEV and the starting vortex; and (3) generation of bound circulation during the pitching motion, whereas that of the revolving–surging wing is negligible in the acceleration phase. Experiments in Fluids Springer Journals

Three-dimensional flow structures and unsteady forces on pitching and surging revolving flat plates

Loading next page...
Springer Berlin Heidelberg
Copyright © 2015 by The Author(s)
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial