Three-dimensional flow measurements on flapping wings using synthetic aperture PIV

Three-dimensional flow measurements on flapping wings using synthetic aperture PIV We present the results of 3D velocity measurements of the flow fields around a free-flying painted lady butterfly (Vanessa cardui) and a tethered mechanical flapper using Synthetic Aperture PIV (SAPIV). The velocity fields presented for the free-flying butterfly have limited spatial resolution; however, leading edge vortices (LEV) and trailing edge vortices (TEV) can be seen during the downstroke of the butterfly. The results show that SAPIV has potential as a flow analysis tool to obtain whole-field, time-resolved velocities surrounding freely flying insects. The results of a tethered mechanical flapper focus mainly on the LEV and TEV through an entire flapping cycle. The results are compared to velocity measurements taken using traditional PIV techniques. Additionally, force measurements of the lift and thrust generated by the mechanical flapper are compared with the calculated forces from the measured velocity data and circulation in the flow field. The reconstructed visual hull of the butterfly and mechanical flapper is also discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Three-dimensional flow measurements on flapping wings using synthetic aperture PIV

Loading next page...
 
/lp/springer_journal/three-dimensional-flow-measurements-on-flapping-wings-using-synthetic-TqsXxsLq7r
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-014-1831-4
Publisher site
See Article on Publisher Site

Abstract

We present the results of 3D velocity measurements of the flow fields around a free-flying painted lady butterfly (Vanessa cardui) and a tethered mechanical flapper using Synthetic Aperture PIV (SAPIV). The velocity fields presented for the free-flying butterfly have limited spatial resolution; however, leading edge vortices (LEV) and trailing edge vortices (TEV) can be seen during the downstroke of the butterfly. The results show that SAPIV has potential as a flow analysis tool to obtain whole-field, time-resolved velocities surrounding freely flying insects. The results of a tethered mechanical flapper focus mainly on the LEV and TEV through an entire flapping cycle. The results are compared to velocity measurements taken using traditional PIV techniques. Additionally, force measurements of the lift and thrust generated by the mechanical flapper are compared with the calculated forces from the measured velocity data and circulation in the flow field. The reconstructed visual hull of the butterfly and mechanical flapper is also discussed.

Journal

Experiments in FluidsSpringer Journals

Published: Oct 15, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off