Three-dimensional flow field around and downstream of a subscale model rotating vertical axis wind turbine

Three-dimensional flow field around and downstream of a subscale model rotating vertical axis... Three-dimensional, three-component mean velocity fields have been measured around and downstream of a scale model vertical axis wind turbine (VAWT) operated at tip speed ratios (TSRs) of 1.25 and 2.5, in addition to a non-rotating case. The five-bladed turbine model has an aspect ratio (height/diameter) of 1 and is operated in a water tunnel at a Reynolds number based on turbine diameter of 11,600. Velocity fields are acquired using magnetic resonance velocimetry (MRV) at an isotropic resolution of 1/50 of the turbine diameter. Mean flow reversal is observed immediately behind the turbine for cases with rotation. The turbine wake is highly three-dimensional and asymmetric throughout the investigated region, which extends up to 7 diameters downstream. A vortex pair, generated at the upwind-turning side of the turbine, plays a dominant role in wake dynamics by entraining faster fluid from the freestream and aiding in wake recovery. The higher TSR case shows a larger region of reverse flow and greater asymmetry in the near wake of the turbine, but faster wake recovery due to the increase in vortex pair strength with increasing TSR. The present measurement technique also provides detailed information about flow in the vicinity of the turbine blades and within the turbine rotor. The details of the flow field around VAWTs and in their wakes can inform the design of high-density VAWT wind farms, where wake interaction between turbines is a principal consideration. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Three-dimensional flow field around and downstream of a subscale model rotating vertical axis wind turbine

Loading next page...
 
/lp/springer_journal/three-dimensional-flow-field-around-and-downstream-of-a-subscale-model-3Sxrk5jya6
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-016-2122-z
Publisher site
See Article on Publisher Site

Abstract

Three-dimensional, three-component mean velocity fields have been measured around and downstream of a scale model vertical axis wind turbine (VAWT) operated at tip speed ratios (TSRs) of 1.25 and 2.5, in addition to a non-rotating case. The five-bladed turbine model has an aspect ratio (height/diameter) of 1 and is operated in a water tunnel at a Reynolds number based on turbine diameter of 11,600. Velocity fields are acquired using magnetic resonance velocimetry (MRV) at an isotropic resolution of 1/50 of the turbine diameter. Mean flow reversal is observed immediately behind the turbine for cases with rotation. The turbine wake is highly three-dimensional and asymmetric throughout the investigated region, which extends up to 7 diameters downstream. A vortex pair, generated at the upwind-turning side of the turbine, plays a dominant role in wake dynamics by entraining faster fluid from the freestream and aiding in wake recovery. The higher TSR case shows a larger region of reverse flow and greater asymmetry in the near wake of the turbine, but faster wake recovery due to the increase in vortex pair strength with increasing TSR. The present measurement technique also provides detailed information about flow in the vicinity of the turbine blades and within the turbine rotor. The details of the flow field around VAWTs and in their wakes can inform the design of high-density VAWT wind farms, where wake interaction between turbines is a principal consideration.

Journal

Experiments in FluidsSpringer Journals

Published: Feb 17, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off