Three-dimensional bubble field resolution using synthetic aperture imaging: application to a plunging jet

Three-dimensional bubble field resolution using synthetic aperture imaging: application to a... A methodology for resolving three-dimensional (3D) bubble fields using 3D synthetic aperture imaging (SA imaging) is developed and applied to the bubbly flows induced by a turbulent circular plunging jet. 3D SA imaging involves capturing entirely in-focus images in an array of cameras with multiple viewpoints, then reprojecting the images into the measurement volume and combining them post capture. The result is a stack of synthetically refocused images that span the measurement volume with each refocused image having a narrow focus on a particular plane. In this paper, bubble shadow images are captured by projecting diffuse backlight onto the measurement volume. 3D SA imaging is ideally suited to investigate optically dense multiphase flows due to the ability to reconstruct volumes that contain partial occlusions. Instantaneous bubble sizes and locations in the plunging jet bubble fields are extracted from the volumes using two feature extraction algorithms and presented for various jet heights. The data are compared with existing literature on bubble penetration depth and size distributions. A scaling law for the integrated air concentration as a function of depth below the free-surface is proposed. Coupled with scaling laws for a parameter describing the radius of the bubble cone and radial concentration profiles, this new scaling law can be used to determine the entire air concentration profile given a minimal number of single-point measurements. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Three-dimensional bubble field resolution using synthetic aperture imaging: application to a plunging jet

Loading next page...
 
/lp/springer_journal/three-dimensional-bubble-field-resolution-using-synthetic-aperture-mEvmUF4Aey
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by Springer-Verlag (outside the USA)
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Engineering Fluid Dynamics; Fluid- and Aerodynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-012-1322-4
Publisher site
See Article on Publisher Site

Abstract

A methodology for resolving three-dimensional (3D) bubble fields using 3D synthetic aperture imaging (SA imaging) is developed and applied to the bubbly flows induced by a turbulent circular plunging jet. 3D SA imaging involves capturing entirely in-focus images in an array of cameras with multiple viewpoints, then reprojecting the images into the measurement volume and combining them post capture. The result is a stack of synthetically refocused images that span the measurement volume with each refocused image having a narrow focus on a particular plane. In this paper, bubble shadow images are captured by projecting diffuse backlight onto the measurement volume. 3D SA imaging is ideally suited to investigate optically dense multiphase flows due to the ability to reconstruct volumes that contain partial occlusions. Instantaneous bubble sizes and locations in the plunging jet bubble fields are extracted from the volumes using two feature extraction algorithms and presented for various jet heights. The data are compared with existing literature on bubble penetration depth and size distributions. A scaling law for the integrated air concentration as a function of depth below the free-surface is proposed. Coupled with scaling laws for a parameter describing the radius of the bubble cone and radial concentration profiles, this new scaling law can be used to determine the entire air concentration profile given a minimal number of single-point measurements.

Journal

Experiments in FluidsSpringer Journals

Published: Jun 12, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off