Three differentially expressed S-adenosylmethionine synthetases from Catharanthus roseus: molecular and functional characterization

Three differentially expressed S-adenosylmethionine synthetases from Catharanthus roseus:... We describe the molecular and functional characterization of three closely related S-adenosyl-L-methionine synthetase (SAMS) isoenzymes from Catharanthus roseus (Madagascar periwinkle). The genes are differentially expressed in cell cultures during growth of the culture and after application of various stresses (elicitor, nutritional down-shift, increased NaCl). Seedlings revealed organ-specific expression and differential gene regulation after salt stress. A relationship analysis indicated that plant SAMS group in two main clusters distinguished by characteristic amino acid exchanges at specific positions, and this suggested differences in the enzyme properties or the regulation. SAMS1 and SAMS2 are of type I and SAMS3 is of type II. The properties of the isoenzymes were compared after heterologous expression of the individual enzymes, but no significant differences were detected in a) optima for temperature (37 to 45 °C) or pH (7 to 8.3); b) dependence on cations (divalent: Mg2+, Mn2+, Co2+; monovalent: K+, $${\text{NH}}_{\text{4}}^{\text{ + }} $$ , Na+); c) Kms for ATP and L-methionine; d) inhibition by reaction products (S-adenosyl-L-methionine, PPi, Pi), by the reaction intermediate tripolyphosphate, and by the substrate analogues ethionine and cycloleucine; e) response to metabolites from the methyl cycle (L-homocysteine) or from related pathways (L-ornithine, putrescine, spermidine, spermine); f) native protein size (gel permeation chromatography). The results represent the first characterization of plant SAMS isoenzyme properties with individually expressed proteins. The possibility is discussed that the isoenzyme differences reflect specificities in the association with enzymes that use S-adenosyl-L-methionine. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Three differentially expressed S-adenosylmethionine synthetases from Catharanthus roseus: molecular and functional characterization

Loading next page...
 
/lp/springer_journal/three-differentially-expressed-s-adenosylmethionine-synthetases-from-5jaJEE473Y
Publisher
Springer Journals
Copyright
Copyright © 1997 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005711720930
Publisher site
See Article on Publisher Site

Abstract

We describe the molecular and functional characterization of three closely related S-adenosyl-L-methionine synthetase (SAMS) isoenzymes from Catharanthus roseus (Madagascar periwinkle). The genes are differentially expressed in cell cultures during growth of the culture and after application of various stresses (elicitor, nutritional down-shift, increased NaCl). Seedlings revealed organ-specific expression and differential gene regulation after salt stress. A relationship analysis indicated that plant SAMS group in two main clusters distinguished by characteristic amino acid exchanges at specific positions, and this suggested differences in the enzyme properties or the regulation. SAMS1 and SAMS2 are of type I and SAMS3 is of type II. The properties of the isoenzymes were compared after heterologous expression of the individual enzymes, but no significant differences were detected in a) optima for temperature (37 to 45 °C) or pH (7 to 8.3); b) dependence on cations (divalent: Mg2+, Mn2+, Co2+; monovalent: K+, $${\text{NH}}_{\text{4}}^{\text{ + }} $$ , Na+); c) Kms for ATP and L-methionine; d) inhibition by reaction products (S-adenosyl-L-methionine, PPi, Pi), by the reaction intermediate tripolyphosphate, and by the substrate analogues ethionine and cycloleucine; e) response to metabolites from the methyl cycle (L-homocysteine) or from related pathways (L-ornithine, putrescine, spermidine, spermine); f) native protein size (gel permeation chromatography). The results represent the first characterization of plant SAMS isoenzyme properties with individually expressed proteins. The possibility is discussed that the isoenzyme differences reflect specificities in the association with enzymes that use S-adenosyl-L-methionine.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 29, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off