Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Three different genes encode the iron-sulfur subunit of succinate dehydrogenase in Arabidopsis thaliana

Three different genes encode the iron-sulfur subunit of succinate dehydrogenase in Arabidopsis... The iron-sulfur protein is an essential component of mitochondrial complex II (succinate dehydrogenase, SDH), which is a functional enzyme of both the citric acid cycle and the respiratory electron transport chain. This protein is encoded by a single-copy nuclear gene in mammals and fungi and by a mitochondrial gene in Rhodophyta and the protist Reclinomonas americana. In Arabidopsis thaliana, the homologous protein is now found to be encoded by three nuclear genes. Two genes (sdh2-1 andsdh2-2) likely arose from a relatively recent duplication event since they have similar structures, encode nearly identical proteins and show similar expression patterns. Both genes are interrupted by a single intron located at a conserved position. Expression was detected in all tissues analysed, with the highest steady-state mRNA levels found in flowers and inflorescences. In contrast, the third gene (sdh2-3) is interrupted by 4 introns, is expressed at a low level, and encodes a SDH2-3 protein which is only 67% similar to SDH2-1 and SDH2-2 and has a different N-terminal presequence. Interestingly, the proteins encoded by these three genes are probably functional because they are highly conserved compared with their homologues in other organisms. These proteins contain the cysteine motifs involved in binding the three iron-sulfur clusters essential for electron transport. Furthermore, the three polypeptides are found to be imported into isolated plant mitochondria. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Three different genes encode the iron-sulfur subunit of succinate dehydrogenase in Arabidopsis thaliana

Loading next page...
 
/lp/springer_journal/three-different-genes-encode-the-iron-sulfur-subunit-of-succinate-tjUl00gcQA

References (41)

Publisher
Springer Journals
Copyright
Copyright © 2001 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
DOI
10.1023/A:1010612506070
Publisher site
See Article on Publisher Site

Abstract

The iron-sulfur protein is an essential component of mitochondrial complex II (succinate dehydrogenase, SDH), which is a functional enzyme of both the citric acid cycle and the respiratory electron transport chain. This protein is encoded by a single-copy nuclear gene in mammals and fungi and by a mitochondrial gene in Rhodophyta and the protist Reclinomonas americana. In Arabidopsis thaliana, the homologous protein is now found to be encoded by three nuclear genes. Two genes (sdh2-1 andsdh2-2) likely arose from a relatively recent duplication event since they have similar structures, encode nearly identical proteins and show similar expression patterns. Both genes are interrupted by a single intron located at a conserved position. Expression was detected in all tissues analysed, with the highest steady-state mRNA levels found in flowers and inflorescences. In contrast, the third gene (sdh2-3) is interrupted by 4 introns, is expressed at a low level, and encodes a SDH2-3 protein which is only 67% similar to SDH2-1 and SDH2-2 and has a different N-terminal presequence. Interestingly, the proteins encoded by these three genes are probably functional because they are highly conserved compared with their homologues in other organisms. These proteins contain the cysteine motifs involved in binding the three iron-sulfur clusters essential for electron transport. Furthermore, the three polypeptides are found to be imported into isolated plant mitochondria.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 3, 2004

There are no references for this article.