THESUS: Organizing Web document collections based on link semantics

THESUS: Organizing Web document collections based on link semantics The requirements for effective search and management of the WWW are stronger than ever. Currently Web documents are classified based on their content not taking into account the fact that these documents are connected to each other by links. We claim that a page’s classification is enriched by the detection of its incoming links’ semantics. This would enable effective browsing and enhance the validity of search results in the WWW context. Another aspect that is underaddressed and strictly related to the tasks of browsing and searching is the similarity of documents at the semantic level. The above observations lead us to the adoption of a hierarchy of concepts (ontology) and a thesaurus to exploit links and provide a better characterization of Web documents. The enhancement of document characterization makes operations such as clustering and labeling very interesting. To this end, we devised a system called THESUS. The system deals with an initial sets of Web documents, extracts keywords from all pages’ incoming links, and converts them to semantics by mapping them to a domain’s ontology. Then a clustering algorithm is applied to discover groups of Web documents. The effectiveness of the clustering process is based on the use of a novel similarity measure between documents characterized by sets of terms. Web documents are organized into thematic subsets based on their semantics. The subsets are then labeled, thereby enabling easier management (browsing, searching, querying) of the Web. In this article, we detail the process of this system and give an experimental analysis of its results. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

THESUS: Organizing Web document collections based on link semantics

Loading next page...
 
/lp/springer_journal/thesus-organizing-web-document-collections-based-on-link-semantics-K86Q2QSU1P
Publisher
Springer-Verlag
Copyright
Copyright © 2003 by Springer-Verlag
Subject
ComputerScience
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-003-0100-6
Publisher site
See Article on Publisher Site

Abstract

The requirements for effective search and management of the WWW are stronger than ever. Currently Web documents are classified based on their content not taking into account the fact that these documents are connected to each other by links. We claim that a page’s classification is enriched by the detection of its incoming links’ semantics. This would enable effective browsing and enhance the validity of search results in the WWW context. Another aspect that is underaddressed and strictly related to the tasks of browsing and searching is the similarity of documents at the semantic level. The above observations lead us to the adoption of a hierarchy of concepts (ontology) and a thesaurus to exploit links and provide a better characterization of Web documents. The enhancement of document characterization makes operations such as clustering and labeling very interesting. To this end, we devised a system called THESUS. The system deals with an initial sets of Web documents, extracts keywords from all pages’ incoming links, and converts them to semantics by mapping them to a domain’s ontology. Then a clustering algorithm is applied to discover groups of Web documents. The effectiveness of the clustering process is based on the use of a novel similarity measure between documents characterized by sets of terms. Web documents are organized into thematic subsets based on their semantics. The subsets are then labeled, thereby enabling easier management (browsing, searching, querying) of the Web. In this article, we detail the process of this system and give an experimental analysis of its results.

Journal

The VLDB JournalSpringer Journals

Published: Nov 1, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off