Thermoregulation of the bovine scrotum 1: measurements of free-range animals in a paddock and pen

Thermoregulation of the bovine scrotum 1: measurements of free-range animals in a paddock and pen The bull’s scrotum and scrotal cord vasculature has traditionally been regarded as a thermoregulatory device for maintaining optimal testicular temperature for normal spermatogenesis. This assumption has mostly been derived from discrete measurements using thermocouples with limited data correlating continuous scrotal temperature (ST) to body temperature (BT). From mid-summer to early autumn, four Wagyu bulls (9–18 months) were surgically implanted with two data loggers (DL) logging at 30 min intervals: one on the right hand side flank and the other was attached to the visceral vaginal tunic of the mid-testis. Bulls were firstly housed in a paddock (PK) for 13 days and then moved to individual pens (IP), again for 13 days. Repeated measures analysis modelled the long-term and diurnal trends in BT and ST. While both day and time of day (TOD) were significant effects for ST at both housing locations (P < 0.005), only TOD showed significance for BT at both locations (P < 0.0001). Significant effects were seen between bulls with ST (F = 167.2, P < 0.001) but not BT (F = 0.03, P = 0.863), suggestive of variation in individual bull thermoregulatory capacity. Dual peaks were observed in ST at 0500 and 2130 h when housed in PK but not IP, suggesting ST may be influenced by external stimuli such as postural or behavioural changes. Reporting concurrent and continuous BT and ST will allow further investigation into factors influencing bovine ST and should be useful in selecting bulls with high degrees of thermoregulation capacity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Biometeorology Springer Journals

Thermoregulation of the bovine scrotum 1: measurements of free-range animals in a paddock and pen

Loading next page...
 
/lp/springer_journal/thermoregulation-of-the-bovine-scrotum-1-measurements-of-free-range-X0SuHOb2Sa
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by ISB
Subject
Environment; Environment, general; Biological and Medical Physics, Biophysics; Meteorology; Animal Physiology; Plant Physiology; Environmental Health
ISSN
0020-7128
eISSN
1432-1254
D.O.I.
10.1007/s00484-017-1315-3
Publisher site
See Article on Publisher Site

Abstract

The bull’s scrotum and scrotal cord vasculature has traditionally been regarded as a thermoregulatory device for maintaining optimal testicular temperature for normal spermatogenesis. This assumption has mostly been derived from discrete measurements using thermocouples with limited data correlating continuous scrotal temperature (ST) to body temperature (BT). From mid-summer to early autumn, four Wagyu bulls (9–18 months) were surgically implanted with two data loggers (DL) logging at 30 min intervals: one on the right hand side flank and the other was attached to the visceral vaginal tunic of the mid-testis. Bulls were firstly housed in a paddock (PK) for 13 days and then moved to individual pens (IP), again for 13 days. Repeated measures analysis modelled the long-term and diurnal trends in BT and ST. While both day and time of day (TOD) were significant effects for ST at both housing locations (P < 0.005), only TOD showed significance for BT at both locations (P < 0.0001). Significant effects were seen between bulls with ST (F = 167.2, P < 0.001) but not BT (F = 0.03, P = 0.863), suggestive of variation in individual bull thermoregulatory capacity. Dual peaks were observed in ST at 0500 and 2130 h when housed in PK but not IP, suggesting ST may be influenced by external stimuli such as postural or behavioural changes. Reporting concurrent and continuous BT and ST will allow further investigation into factors influencing bovine ST and should be useful in selecting bulls with high degrees of thermoregulation capacity.

Journal

International Journal of BiometeorologySpringer Journals

Published: Mar 9, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off