Thermoreception of Paramecium: Different Ca2+ Channels Were Activated by Heating and Cooling

Thermoreception of Paramecium: Different Ca2+ Channels Were Activated by Heating and Cooling A Paramecium cell responded to heat and cold stimuli, exhibiting increased frequency of directional changes in its swimming behavior. The increase in the frequency of directional changes was maintained during heating, but was transient during cooling. Although variations were large, as expected with this type of electrophysiological recording, results consistently showed a sustained depolarization of deciliated cells in response to heating. Depolarizations were also consistently observed upon cooling. However, these depolarizations were transient and not continuous throughout the cooling period. These depolarizations were lost or became small in Ca2+-free solutions. In a voltage-clamped cell, heating induced a continuous inward current and cooling induced a transient inward current under conditions where K+ currents were suppressed. The heat-induced inward current was not affected significantly by replacing extracellular Ca2+ with equimolar concentrations of Ba2+, Sr2+, Mg2+, or Mn2+, and was lost upon replacing with equimolar concentration of Ni2+. On the other hand, the cold-induced inward current was not affected significantly by Ba2+, or Sr2+, however the decay of the inward current was slowed and was lost or became small upon replacing with equimolar concentrations of Mg2+, Mn2+, or Ni2+. These results indicate that Paramecium cells have heat-activated Ca2+ channels and cold-activated Ca2+ channels and that the cold-activated Ca2+ channel is different from the heat-activated Ca2+ channel in the ion selectivity and the calcium-dependent inactivation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Thermoreception of Paramecium: Different Ca2+ Channels Were Activated by Heating and Cooling

Loading next page...
 
/lp/springer_journal/thermoreception-of-paramecium-different-ca2-channels-were-activated-by-PE1vh0sJeb
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1999 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900517
Publisher site
See Article on Publisher Site

Abstract

A Paramecium cell responded to heat and cold stimuli, exhibiting increased frequency of directional changes in its swimming behavior. The increase in the frequency of directional changes was maintained during heating, but was transient during cooling. Although variations were large, as expected with this type of electrophysiological recording, results consistently showed a sustained depolarization of deciliated cells in response to heating. Depolarizations were also consistently observed upon cooling. However, these depolarizations were transient and not continuous throughout the cooling period. These depolarizations were lost or became small in Ca2+-free solutions. In a voltage-clamped cell, heating induced a continuous inward current and cooling induced a transient inward current under conditions where K+ currents were suppressed. The heat-induced inward current was not affected significantly by replacing extracellular Ca2+ with equimolar concentrations of Ba2+, Sr2+, Mg2+, or Mn2+, and was lost upon replacing with equimolar concentration of Ni2+. On the other hand, the cold-induced inward current was not affected significantly by Ba2+, or Sr2+, however the decay of the inward current was slowed and was lost or became small upon replacing with equimolar concentrations of Mg2+, Mn2+, or Ni2+. These results indicate that Paramecium cells have heat-activated Ca2+ channels and cold-activated Ca2+ channels and that the cold-activated Ca2+ channel is different from the heat-activated Ca2+ channel in the ion selectivity and the calcium-dependent inactivation.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Apr 1, 1999

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off