Thermomechanical behavior of Pravcicka Brana Rock Arch (Czech Republic)

Thermomechanical behavior of Pravcicka Brana Rock Arch (Czech Republic) The paper discusses the results of research devoted to the preservation of a natural heritage site carried out at Pravcicka Brana Rock Arch, the largest natural sandstone bridge in Europe, located in the Bohemian Switzerland National Park, Czech Republic. One of the objectives of the study was to explore natural diurnal and annual temperature oscillations at the shallowest part of the rock mass and to acquire an insight into the heat balance both at the surface and within the rock mass. In 2009, four thermocouples were embedded at two positions (eastern and western sides) in a longitudinal direction sequence: rock surface and three different depths 0.10, 0.40, and 0.90 m. Calculation of heat flux inside the rock mass was treated with Fourier’s series which analyzes periodic temperature variation into a set of harmonics of the dominant diurnal or annual waves. Based on the results of Fourier’s analysis, fundamental thermophysical parameters were determined. These were used as the input data to establish a numerical model of temperature distribution in the near surface depth and thermomechanical (kinematic) behavior of the rock arch. Apart from in situ temperature monitoring data, the displacement time series data for the period 1993–2012 recorded by portable crack gauges in 1-month intervals were available. Finally, the rate of displacements in the model simulations was analyzed and compared with those recorded by on site displacement monitoring. Model simulations detected the existence of thermally driven deformation comprising both quasi-cyclic (reversible) movements and irreversible (plastic) deformations which in fact affirm the idea that temperature oscillations are the most contributing factor to the total displacement rate observed at the Pravcicka Brana Rock Arch. Based on the results of model simulation, the authors address the key issue whether the actual deformation mechanism and dynamics will have any influence on the stability of the Pravcicka Brana Rock Arch. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Landslides Springer Journals

Thermomechanical behavior of Pravcicka Brana Rock Arch (Czech Republic)

Loading next page...
 
/lp/springer_journal/thermomechanical-behavior-of-pravcicka-brana-rock-arch-czech-republic-qtNKfS7arM
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Earth Sciences; Natural Hazards; Geography, general; Agriculture; Civil Engineering
ISSN
1612-510X
eISSN
1612-5118
D.O.I.
10.1007/s10346-016-0784-5
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial