Thermoinduction of Chlorophyll Fluorescence and the Age-Related Condition of Higher Plant Leaves

Thermoinduction of Chlorophyll Fluorescence and the Age-Related Condition of Higher Plant Leaves The age-related changes in the temperature dependence curves (TDC) of chlorophyll fluorescence were studied in leaf segments of wheat (Triticum aestivumL.), tomato (Lycopersicum esculentumMill.), and cucumber (Cucumis sativumL.) plants grown under controlled photoculture conditions. Three major TDC patterns of chlorophyll fluorescence were identified within the temperature range of 25–70°C, with each of the patterns corresponding to a certain phase of leaf development. The transition from one type of thermogram to another was a gradual and ordered process. The magnitude of the low-temperature TDC peak increased until leaves completely expanded and declined with leaf senescence. In the course of leaf senescence, the thermograms exhibited an additional shoulder, which further changed into a peak at 55–65°C with increasing magnitude. Our data provide the basis for assessing leaf age from the type of chlorophyll fluorescence thermogram and the changes in the particular indices characteristic of TDC of chlorophyll fluorescence. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Thermoinduction of Chlorophyll Fluorescence and the Age-Related Condition of Higher Plant Leaves

Loading next page...
 
/lp/springer_journal/thermoinduction-of-chlorophyll-fluorescence-and-the-age-related-oYflgWh0QU
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2001 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1009016520582
Publisher site
See Article on Publisher Site

Abstract

The age-related changes in the temperature dependence curves (TDC) of chlorophyll fluorescence were studied in leaf segments of wheat (Triticum aestivumL.), tomato (Lycopersicum esculentumMill.), and cucumber (Cucumis sativumL.) plants grown under controlled photoculture conditions. Three major TDC patterns of chlorophyll fluorescence were identified within the temperature range of 25–70°C, with each of the patterns corresponding to a certain phase of leaf development. The transition from one type of thermogram to another was a gradual and ordered process. The magnitude of the low-temperature TDC peak increased until leaves completely expanded and declined with leaf senescence. In the course of leaf senescence, the thermograms exhibited an additional shoulder, which further changed into a peak at 55–65°C with increasing magnitude. Our data provide the basis for assessing leaf age from the type of chlorophyll fluorescence thermogram and the changes in the particular indices characteristic of TDC of chlorophyll fluorescence.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 10, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off