Thermoelectric performance of Te doped with As and alloyed with Se

Thermoelectric performance of Te doped with As and alloyed with Se Recently, it was found that element semiconductor tellurium (Te) behaved a high thermoelectric (TE) performance. Further enhancement of its TE performance was expected in decreasing phonon thermal conductivity. In this paper, element semiconductor Te doped with arsenic (As) and alloyed with selenium (Se) was prepared by one-step high-pressure method. Trace amounts of As doping could increase the carrier concentration of Te effectively and thereby optimize its power factor. The phonon thermal conductivity of Te was depressed sharply, due to the effect of high-pressure compression (introducing dislocations, lattice curvatures and nanograins) and Se alloying (introducing point defects and crystal dislocation). The beneficial effect of As doping on the power factor, high-pressure compression and Se alloying on thermal conductivity led to a peak ZT of 0.81 at 540 K for Te doped with 0.5 mol% As and alloyed with 10 mol% Se. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science Springer Journals

Thermoelectric performance of Te doped with As and alloyed with Se

Loading next page...
 
/lp/springer_journal/thermoelectric-performance-of-te-doped-with-as-and-alloyed-with-se-BM0G4zk0hl
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Materials Science; Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics
ISSN
0022-2461
eISSN
1573-4803
D.O.I.
10.1007/s10853-018-2389-y
Publisher site
See Article on Publisher Site

Abstract

Recently, it was found that element semiconductor tellurium (Te) behaved a high thermoelectric (TE) performance. Further enhancement of its TE performance was expected in decreasing phonon thermal conductivity. In this paper, element semiconductor Te doped with arsenic (As) and alloyed with selenium (Se) was prepared by one-step high-pressure method. Trace amounts of As doping could increase the carrier concentration of Te effectively and thereby optimize its power factor. The phonon thermal conductivity of Te was depressed sharply, due to the effect of high-pressure compression (introducing dislocations, lattice curvatures and nanograins) and Se alloying (introducing point defects and crystal dislocation). The beneficial effect of As doping on the power factor, high-pressure compression and Se alloying on thermal conductivity led to a peak ZT of 0.81 at 540 K for Te doped with 0.5 mol% As and alloyed with 10 mol% Se.

Journal

Journal of Materials ScienceSpringer Journals

Published: May 10, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off