Thermodynamics of Fatty Acid Transfer

Thermodynamics of Fatty Acid Transfer There is continuing controversy about the mechanism for transfer of fatty acids (FA) between plasma and the interior of cells and vice versa. One view is that this is a spontaneous process. The generally accepted view is that each step of the process is facilitated by a specialized protein. Whether uptake is spontaneous or facilitated, the components of the uptake system, e.g., albumin, water, FA, plasma membrane, and putative transport proteins of the plasma membrane, must behave according to the rules of the physical chemistry of the system. We review these features to illustrate the constraints they impose on the design of experiments to adduce the mechanism of uptake. Analysis of the literature in the context of the physical chemistry of the uptake system indicates that arguments for a facilitated mechanism of uptake for FA are not supported by any data extant. By contrast, comparison of the rates for individual steps of the pathway traversed by FA moving from albumin to the inside of a cell (or vesicles of a model system) with rates of uptake of FA of tissues in the steady state shows that the rates of the former are sufficient to account for the rate of the latter. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Thermodynamics of Fatty Acid Transfer

Loading next page...
 
/lp/springer_journal/thermodynamics-of-fatty-acid-transfer-fZvC81z1kd
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 2000 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232001080
Publisher site
See Article on Publisher Site

Abstract

There is continuing controversy about the mechanism for transfer of fatty acids (FA) between plasma and the interior of cells and vice versa. One view is that this is a spontaneous process. The generally accepted view is that each step of the process is facilitated by a specialized protein. Whether uptake is spontaneous or facilitated, the components of the uptake system, e.g., albumin, water, FA, plasma membrane, and putative transport proteins of the plasma membrane, must behave according to the rules of the physical chemistry of the system. We review these features to illustrate the constraints they impose on the design of experiments to adduce the mechanism of uptake. Analysis of the literature in the context of the physical chemistry of the uptake system indicates that arguments for a facilitated mechanism of uptake for FA are not supported by any data extant. By contrast, comparison of the rates for individual steps of the pathway traversed by FA moving from albumin to the inside of a cell (or vesicles of a model system) with rates of uptake of FA of tissues in the steady state shows that the rates of the former are sufficient to account for the rate of the latter.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jul 15, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off