Thermodynamics and Energetics of the Tonoplast Membrane Operating as a Hysteresis Switch in an Oscillatory Model of Crassulacean Acid Metabolism

Thermodynamics and Energetics of the Tonoplast Membrane Operating as a Hysteresis Switch in an... The observed endogenous circadian rhythm in plants performing Crassulacean acid metabolism is effected by malate transport at the tonoplast membrane. Experimental and theoretical work asks for a hysteresis switch, regulating this transport via the ordering state of the membrane. We apply a schematic molecular model to calculate the thermally averaged order parameter of the membrane lipid structure in its dependence on external parameters temperature and area per molecule. The model shows a first order structural phase transition in a biologically relevant temperature range. Osmotic consequences of malate accumulation can trigger a transition between the two phases by changing the surface area of the cell vacuole. Estimation of the energy needed to expand the vacuole under turgor pressure because of osmotic changes while acidifying shows that energy needed as latent heat for the calculated change between phases can easily be afforded by the cell. Thus, malate content and the coexisting two phases of lipid order, showing hysteretic behavior, can serve as a feedback system in an oscillatory model of Crassulacean acid metabolism, establishing the circadian clock needed for endogenous rhythmicity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Thermodynamics and Energetics of the Tonoplast Membrane Operating as a Hysteresis Switch in an Oscillatory Model of Crassulacean Acid Metabolism

Loading next page...
 
/lp/springer_journal/thermodynamics-and-energetics-of-the-tonoplast-membrane-operating-as-a-8jASB3C2fz
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1998 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900418
Publisher site
See Article on Publisher Site

Abstract

The observed endogenous circadian rhythm in plants performing Crassulacean acid metabolism is effected by malate transport at the tonoplast membrane. Experimental and theoretical work asks for a hysteresis switch, regulating this transport via the ordering state of the membrane. We apply a schematic molecular model to calculate the thermally averaged order parameter of the membrane lipid structure in its dependence on external parameters temperature and area per molecule. The model shows a first order structural phase transition in a biologically relevant temperature range. Osmotic consequences of malate accumulation can trigger a transition between the two phases by changing the surface area of the cell vacuole. Estimation of the energy needed to expand the vacuole under turgor pressure because of osmotic changes while acidifying shows that energy needed as latent heat for the calculated change between phases can easily be afforded by the cell. Thus, malate content and the coexisting two phases of lipid order, showing hysteretic behavior, can serve as a feedback system in an oscillatory model of Crassulacean acid metabolism, establishing the circadian clock needed for endogenous rhythmicity.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Sep 1, 1998

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off