Thermodynamic studies of methylene blue adsorption onto Fe-doped sulfated titania

Thermodynamic studies of methylene blue adsorption onto Fe-doped sulfated titania Adsorption equilibrium of methylene blue onto Fe-doped sulfated titania (FST) samples was studied at different temperatures (298, 303, and 308 K). Based on the wavelength scanning from 580 to 760 nm, the wavelength of maximum absorbance of methylene blue was determined to be 666 nm and the corresponding calibration curve can be described by the equation of A = 0.0068 + 0.1514C. The adsorption of methylene blue onto FST samples was conformed to the Langmuir isotherms. The absorption capacity of each FST sample for methylene blue increases with increasing temperature. The increase in the adsorption parameters (q m, b, and K 0) and the positive ΔH θ reveal the endothermic feature of this adsorption process. The negative ΔG θ shows the adsorption of methylene blue onto FST samples can be carried out spontaneously at the examined temperatures. Furthermore, with the calcination temperature increases, the variation in crystallization degree, the surface and the sulfur species will obviously influence the adsorption properties of FST samples and the thermodynamic parameters of this adsorption process. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Thermodynamic studies of methylene blue adsorption onto Fe-doped sulfated titania

Loading next page...
 
/lp/springer_journal/thermodynamic-studies-of-methylene-blue-adsorption-onto-fe-doped-DkUt31aM60
Publisher
Springer Netherlands
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Chemistry; Inorganic Chemistry; Physical Chemistry; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-011-0373-0
Publisher site
See Article on Publisher Site

Abstract

Adsorption equilibrium of methylene blue onto Fe-doped sulfated titania (FST) samples was studied at different temperatures (298, 303, and 308 K). Based on the wavelength scanning from 580 to 760 nm, the wavelength of maximum absorbance of methylene blue was determined to be 666 nm and the corresponding calibration curve can be described by the equation of A = 0.0068 + 0.1514C. The adsorption of methylene blue onto FST samples was conformed to the Langmuir isotherms. The absorption capacity of each FST sample for methylene blue increases with increasing temperature. The increase in the adsorption parameters (q m, b, and K 0) and the positive ΔH θ reveal the endothermic feature of this adsorption process. The negative ΔG θ shows the adsorption of methylene blue onto FST samples can be carried out spontaneously at the examined temperatures. Furthermore, with the calcination temperature increases, the variation in crystallization degree, the surface and the sulfur species will obviously influence the adsorption properties of FST samples and the thermodynamic parameters of this adsorption process.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Sep 7, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off