Thermocouple psychrometer for measurements of water potential in plant tissues by isopiestic method

Thermocouple psychrometer for measurements of water potential in plant tissues by isopiestic method The paper describes a thermocouple psychrometer for measurements of water potential (ψw) and its components—osmotic potential (ψs + m) and turgor pressure (ψp)—in biological objects. The isopiestic method applied in this work does not require preliminary scarification of plant material for eliminating cuticular resistance to diffusion of water vapors. The device is reliable and simple in operation owing to an original design of replaceable plungers carrying the thermocouples. A modified construction of the lid for a thermocouple chamber and the application of a cryoholder excluded the necessity of removing the sample from the chamber after ψw measurements prior to its freezing in liquid nitrogen and subsequent thawing for determination of ψs +m. This feature improves the accuracy of determining ψp, which is calculated as ψw − ψs + m. The device can operate with minimal quantities of plant material and allows determination of all three components (ψw, ψs + m, ψp) for the same sample. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Thermocouple psychrometer for measurements of water potential in plant tissues by isopiestic method

Loading next page...
 
/lp/springer_journal/thermocouple-psychrometer-for-measurements-of-water-potential-in-plant-Tefq3a3LzV
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2010 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Sciences ; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443710050171
Publisher site
See Article on Publisher Site

Abstract

The paper describes a thermocouple psychrometer for measurements of water potential (ψw) and its components—osmotic potential (ψs + m) and turgor pressure (ψp)—in biological objects. The isopiestic method applied in this work does not require preliminary scarification of plant material for eliminating cuticular resistance to diffusion of water vapors. The device is reliable and simple in operation owing to an original design of replaceable plungers carrying the thermocouples. A modified construction of the lid for a thermocouple chamber and the application of a cryoholder excluded the necessity of removing the sample from the chamber after ψw measurements prior to its freezing in liquid nitrogen and subsequent thawing for determination of ψs +m. This feature improves the accuracy of determining ψp, which is calculated as ψw − ψs + m. The device can operate with minimal quantities of plant material and allows determination of all three components (ψw, ψs + m, ψp) for the same sample.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Sep 2, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off