Thermo-mechanical analysis in pulsed laser cladding of WC powder on Inconel 718

Thermo-mechanical analysis in pulsed laser cladding of WC powder on Inconel 718 An uncoupled thermo-mechanical finite element model is developed to simulate the laser-cladding process of tungsten carbide (WC) on Inconel 718. First, a non-linear three-dimensional transient thermal model is developed, which calculates transient temperature distribution in the local clad area. Thermal load attributed to laser beam is implemented to the workpiece by using a developed subroutine. Thermal and mechanical material properties are introduced temperature dependent. All the major physical phenomena associated to the laser-cladding process, such as heat radiation, thermal conduction, and convection heat losses, are taken into account in the developed model. Subsequently, using the thermal history of the thermal analysis, a mechanical analysis is performed, from which the residual stresses are calculated. Both thermal and mechanical analysis results are verified through experimental works. Results show that the temperature profile and clad dimensions are strong function of the heat source and conductivity of material. It is concluded that the laser power and cladding velocity have significant effect on residual stresses. Also, it is found that the longitudinal stresses are approximately three times the transverse ones. Results of mechanical analysis reveal that by increasing input energy, residual stresses increase and number of cracks decreases in the cladded layer. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Thermo-mechanical analysis in pulsed laser cladding of WC powder on Inconel 718

Loading next page...
 
/lp/springer_journal/thermo-mechanical-analysis-in-pulsed-laser-cladding-of-wc-powder-on-BPYECIjASA
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0117-4
Publisher site
See Article on Publisher Site

Abstract

An uncoupled thermo-mechanical finite element model is developed to simulate the laser-cladding process of tungsten carbide (WC) on Inconel 718. First, a non-linear three-dimensional transient thermal model is developed, which calculates transient temperature distribution in the local clad area. Thermal load attributed to laser beam is implemented to the workpiece by using a developed subroutine. Thermal and mechanical material properties are introduced temperature dependent. All the major physical phenomena associated to the laser-cladding process, such as heat radiation, thermal conduction, and convection heat losses, are taken into account in the developed model. Subsequently, using the thermal history of the thermal analysis, a mechanical analysis is performed, from which the residual stresses are calculated. Both thermal and mechanical analysis results are verified through experimental works. Results show that the temperature profile and clad dimensions are strong function of the heat source and conductivity of material. It is concluded that the laser power and cladding velocity have significant effect on residual stresses. Also, it is found that the longitudinal stresses are approximately three times the transverse ones. Results of mechanical analysis reveal that by increasing input energy, residual stresses increase and number of cracks decreases in the cladded layer.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Feb 16, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off