Thermally nucleated magnetic reversal in CoFeB/MgO nanodots

Thermally nucleated magnetic reversal in CoFeB/MgO nanodots Power consumption is the main limitation in the development of new high performance random access memory for portable electronic devices. Magnetic RAM (MRAM) with CoFeB/MgO based magnetic tunnel junctions (MTJs) is a promising candidate for reducing the power consumption given its non-volatile nature while achieving high performance. The dynamic properties and switching mechanisms of MTJs are critical to understanding device operation and to enable scaling of devices below 30 nm in diameter. Here we show that the magnetic reversal mechanism is incoherent and that the switching is thermally nucleated at device operating temperatures. Moreover, we find an intrinsic thermal switching field distribution arising on the sub-nanosecond time-scale even in the absence of size and anisotropy distributions or material defects. These features represent the characteristic signature of the dynamic properties in MTJs and give an intrinsic limit to reversal reliability in small magnetic nanodevices. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

Thermally nucleated magnetic reversal in CoFeB/MgO nanodots

Loading next page...
 
/lp/springer_journal/thermally-nucleated-magnetic-reversal-in-cofeb-mgo-nanodots-M6edXZRmwL
Publisher
Springer Journals
Copyright
Copyright © 2017 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-017-16911-3
Publisher site
See Article on Publisher Site

Abstract

Power consumption is the main limitation in the development of new high performance random access memory for portable electronic devices. Magnetic RAM (MRAM) with CoFeB/MgO based magnetic tunnel junctions (MTJs) is a promising candidate for reducing the power consumption given its non-volatile nature while achieving high performance. The dynamic properties and switching mechanisms of MTJs are critical to understanding device operation and to enable scaling of devices below 30 nm in diameter. Here we show that the magnetic reversal mechanism is incoherent and that the switching is thermally nucleated at device operating temperatures. Moreover, we find an intrinsic thermal switching field distribution arising on the sub-nanosecond time-scale even in the absence of size and anisotropy distributions or material defects. These features represent the characteristic signature of the dynamic properties in MTJs and give an intrinsic limit to reversal reliability in small magnetic nanodevices.

Journal

Scientific ReportsSpringer Journals

Published: Dec 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off