Thermally induced velocity gradients in electroosmotic microchannel flows: the cooling influence of optical infrastructure

Thermally induced velocity gradients in electroosmotic microchannel flows: the cooling influence... An axially non-uniform temperature distribution is shown to induce a disturbance to the electroosmotic flow field in microchannels, causing a significant deviation from the ideal plug-like velocity profile. Such axial temperature gradients are shown to be induced passively by the increased dissipation of Joule heat through the optical infrastructure of a viewing window. A combination of caged-dye-based molecular tagging velocimetry (to determine the cross-stream velocity profiles), fluorescence-based thermometry (to determine the in-channel fluid temperatures), and electrical current measurements are employed. The temperature visualization experiments demonstrate that the fluid is locally cooled in the viewed region, resulting in a local increase in the electric field strength. When large fields are applied, measurements indicate that the fluid’s temperature in the viewed region can be as much as 30°C less than in the remainder of the capillary. Despite an increase in viscosity, this local cooling results in a locally increased electroosmotic wall velocity which induces a concave velocity profile in the viewed portion and a convex velocity profile elsewhere. Experimentally determined profiles exhibit a variation in velocity across the channel of up to 5%. The cause of this velocity profile curvature is confirmed by comparing the velocity profiles obtained at a range of fields to an analytical solution that includes the effects of temperature on the liquid conductivity and viscosity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Thermally induced velocity gradients in electroosmotic microchannel flows: the cooling influence of optical infrastructure

Loading next page...
 
/lp/springer_journal/thermally-induced-velocity-gradients-in-electroosmotic-microchannel-JW0fAGnA6S
Publisher
Springer-Verlag
Copyright
Copyright © 2004 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-004-0875-2
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial