Thermal characterization of a flashing jet by planar laser-induced fluorescence

Thermal characterization of a flashing jet by planar laser-induced fluorescence Flash atomization can be observed when a pressurized fluid is released in an environment at lower pressure. This phenomenon plays an important role in the security management of chemical industries where liquefied gases can be accidentally released at atmosphere. In other applications, for example in propulsion systems, it can have some potential benefits as it is known to produce a fine spray with enhanced atomization. The experimental characterization of these kinds of atomization should be performed by means of non-intrusive measurement techniques since they are very sensitive to external perturbation. In this work, the planar laser-induced fluorescence technique is used to measure the liquid phase temperature of an ethanol superheated flashing jet. The feasibility of the technique is proved, measurements are taken for different superheat conditions, and an analysis of the measurement uncertainties is presented. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Thermal characterization of a flashing jet by planar laser-induced fluorescence

Loading next page...
 
/lp/springer_journal/thermal-characterization-of-a-flashing-jet-by-planar-laser-induced-Dwkf4jHIV2
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-013-1573-8
Publisher site
See Article on Publisher Site

Abstract

Flash atomization can be observed when a pressurized fluid is released in an environment at lower pressure. This phenomenon plays an important role in the security management of chemical industries where liquefied gases can be accidentally released at atmosphere. In other applications, for example in propulsion systems, it can have some potential benefits as it is known to produce a fine spray with enhanced atomization. The experimental characterization of these kinds of atomization should be performed by means of non-intrusive measurement techniques since they are very sensitive to external perturbation. In this work, the planar laser-induced fluorescence technique is used to measure the liquid phase temperature of an ethanol superheated flashing jet. The feasibility of the technique is proved, measurements are taken for different superheat conditions, and an analysis of the measurement uncertainties is presented.

Journal

Experiments in FluidsSpringer Journals

Published: Jul 10, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off