Theory of non-isotropic spatial resolution in PIV

Theory of non-isotropic spatial resolution in PIV The spatial resolution of the PIV interrogation technique is discussed from an analytical standpoint and assessed with Monte Carlo numerical simulation of particle image motion. The PIV measurement error associated with lack of spatial resolution is modelled associating the cross-correlation operator to a moving average filter. The error associated with the "low-pass filtering" effect is investigated by adopting a second-order polynomial expression for the velocity spatial distribution. According to the present error analysis, the measurement error is proportional to the second-order spatial derivative of the velocity field and increases with the square of the window linear size. The strategy for the selection of the window size and properties (aspect ratio and orientation) so as to minimize the error is discussed. The principle is based on nonisotropic interrogation windows of elliptical shape, with a constant area and elongated in the direction of the largest curvature radius. The nonisotropic parameters are defined as eccentricity and orientation, which are based on the local eigenvalues/vectors of the Hessian tensor of the displacement spatial distribution. The technique is implemented in a recursive PIV interrogation method. The performance of nonisotropic interrogation technique is assessed by means of synthetic PIV images, which simulate three situations: first, a one-dimensional sinusoidal shear displacement, which allows comparison of the cross-correlation spatial response with the transfer function of linear filters. Second, the stream-wise exponential velocity decay is simulated, which simulates the particle tracers decelerating downstream of a shock wave and gives an example of a flow with main velocity differences aligned with the velocity direction. The results show that keeping the image density fixed, the error caused by insufficient spatial resolution can be reduced by a factor two when a preferential direction is found in the flow field. Finally, a Lamb–Oseen vortex flow is presented, which shows the complex pattern formed by the interrogation windows in a two-dimensional case. In this case, the improvement in interrogation performance is limited due to the isotropic nature of the velocity spatial fluctuation. Experiments in Fluids Springer Journals

Theory of non-isotropic spatial resolution in PIV

Loading next page...
Copyright © 2003 by Springer-Verlag
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial