Theoretical study of the thermal rearrangement of chloromethylsilanes, and its mechanism

Theoretical study of the thermal rearrangement of chloromethylsilanes, and its mechanism The thermal rearrangement reactions of chloromethylsilane, (chloromethyl)dimethylsilane, and (chloromethyl)vinylsilane have been studied by use of the density functional theory method at the B3LYP/6-311G(d, p) level. The structures of the reactants, transition states, and the products were determined and fully optimized. The geometries of the different stationary points and the harmonic vibrational frequencies were calculated at the same level. The results showed that thermal rearrangement of the chloromethylsilanes occurred via one pathway. The chlorine atom migrated from the carbon atom to the silicon atom, and the hydrogen atom migrated simultaneously from the silicon atom to the carbon atom through a double-three-membered-ring transition state, forming methylchlorosilane, trimethylchlorosilane, and vinylmethylchlorosilane. The energy barriers of the three rearrangements calculated at the B3LYP/6-311G(d, p) level were 217.4, 201.6, and 208.7 kJ mol−1, respectively. The effects of alkyl substituents on silicon atom are discussed. Changes of thermodynamic functions, equilibrium constant, and reaction rate constant were calculated in accordance with Eyring transition-state theory over the temperature range 400–1,500 K. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Theoretical study of the thermal rearrangement of chloromethylsilanes, and its mechanism

Loading next page...
 
/lp/springer_journal/theoretical-study-of-the-thermal-rearrangement-of-chloromethylsilanes-QZgntsMQk2
Publisher
Springer Netherlands
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-012-0564-3
Publisher site
See Article on Publisher Site

Abstract

The thermal rearrangement reactions of chloromethylsilane, (chloromethyl)dimethylsilane, and (chloromethyl)vinylsilane have been studied by use of the density functional theory method at the B3LYP/6-311G(d, p) level. The structures of the reactants, transition states, and the products were determined and fully optimized. The geometries of the different stationary points and the harmonic vibrational frequencies were calculated at the same level. The results showed that thermal rearrangement of the chloromethylsilanes occurred via one pathway. The chlorine atom migrated from the carbon atom to the silicon atom, and the hydrogen atom migrated simultaneously from the silicon atom to the carbon atom through a double-three-membered-ring transition state, forming methylchlorosilane, trimethylchlorosilane, and vinylmethylchlorosilane. The energy barriers of the three rearrangements calculated at the B3LYP/6-311G(d, p) level were 217.4, 201.6, and 208.7 kJ mol−1, respectively. The effects of alkyl substituents on silicon atom are discussed. Changes of thermodynamic functions, equilibrium constant, and reaction rate constant were calculated in accordance with Eyring transition-state theory over the temperature range 400–1,500 K.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: May 9, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off