Theoretical perspectives on carbocation chemistry from energy decomposition analysis

Theoretical perspectives on carbocation chemistry from energy decomposition analysis Understanding carbocation formation is a central concern for all chemical sciences. The widely accepted explanation in terms of inductive/field and delocalization effects is based on quantities that are not straightforwardly computed in popular electronic structure methods. This work reports an alternative approach to the carbocation formation problem based on energy decomposition analysis, more specifically, CMOEDA. The order of stability for carbocations formation was successfully accounted in terms of the energy components. The focus of the analysis shifts from the product of the reaction, i.e., the carbocation itself, to the reactant neutral molecule. Notably, exchange repulsions are the largest energy contribution to increase carbocation stability in the order methyl, primary, secondary and tertiary. Polarization (orbital relaxation) plays a secondary role. Insertion of bulky groups increases the repulsion with the incipient anion (a hydride ion) and decreases the strength of the C–H bond. This pattern is confirmed for several other hydrocarbon cases. Additional systems like halomethanes, amino- and nitro-derivatives are also described. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Theoretical Chemistry Accounts Springer Journals

Theoretical perspectives on carbocation chemistry from energy decomposition analysis

Loading next page...
 
/lp/springer_journal/theoretical-perspectives-on-carbocation-chemistry-from-energy-aV8IzZlLZr
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Chemistry; Theoretical and Computational Chemistry; Inorganic Chemistry; Organic Chemistry; Physical Chemistry; Atomic/Molecular Structure and Spectra
ISSN
1432-881X
eISSN
1432-2234
D.O.I.
10.1007/s00214-018-2232-1
Publisher site
See Article on Publisher Site

Abstract

Understanding carbocation formation is a central concern for all chemical sciences. The widely accepted explanation in terms of inductive/field and delocalization effects is based on quantities that are not straightforwardly computed in popular electronic structure methods. This work reports an alternative approach to the carbocation formation problem based on energy decomposition analysis, more specifically, CMOEDA. The order of stability for carbocations formation was successfully accounted in terms of the energy components. The focus of the analysis shifts from the product of the reaction, i.e., the carbocation itself, to the reactant neutral molecule. Notably, exchange repulsions are the largest energy contribution to increase carbocation stability in the order methyl, primary, secondary and tertiary. Polarization (orbital relaxation) plays a secondary role. Insertion of bulky groups increases the repulsion with the incipient anion (a hydride ion) and decreases the strength of the C–H bond. This pattern is confirmed for several other hydrocarbon cases. Additional systems like halomethanes, amino- and nitro-derivatives are also described.

Journal

Theoretical Chemistry AccountsSpringer Journals

Published: Mar 13, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off