Theoretical investigations into the intermolecular hydrogen-bonding interactions of N-(hydroxymethyl)acetamide dimers

Theoretical investigations into the intermolecular hydrogen-bonding interactions of... The structures of the N-(hydroxymethyl)acetamide (model molecule of ceramide) dimers have been fully optimized at B3LYP/6–311++G** level. The intermolecular hydrogen bonding interaction energies have been calculated using the B3LYP/6–311++G**, B3LYP/6–311++G(2df,2p), MP2(full)/6–311++G** and MP2(full)/6–311++G(2df,2p) methods, respectively. The results show that the O–H···O, N–H···O, O–H···N, and C–H···O hydrogen bonding interactions could exist in N-(hydroxymethyl)acetamide dimers, and the O–H···O, N–H···O, and O–H···N hydrogen bonding interactions could be stronger than C–H···O. The three-dimensional network structure formed by ceramide molecules through intermolecular hydrogen bonding interactions may be the main reason why the stratum corneum of skin could prevent foreign substances from entering our body, as is in accordance with the experimental results. The stability of hydrogen-bonding interactions follow the order of (a) > (b) ≈ (c) > (d) > (e) ≈ (f) > (g) > (h). The analyses of the energy decomposition, frequency, atoms in molecules (AIM), natural bond orbital (NBO), and electron density shift are used to further reveal the nature of the complex formation. In the range of 263.0–328.0 K, the complex is formed via an exothermic reaction, and the solvent with lower temperature and dielectric constant is favorable to this process. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Molecular Modeling Springer Journals

Theoretical investigations into the intermolecular hydrogen-bonding interactions of N-(hydroxymethyl)acetamide dimers

Loading next page...
 
/lp/springer_journal/theoretical-investigations-into-the-intermolecular-hydrogen-bonding-CV4S0YpqQi
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Chemistry; Computer Applications in Chemistry; Molecular Medicine; Computer Appl. in Life Sciences; Characterization and Evaluation of Materials; Theoretical and Computational Chemistry
ISSN
1610-2940
eISSN
0948-5023
D.O.I.
10.1007/s00894-018-3672-1
Publisher site
See Article on Publisher Site

Abstract

The structures of the N-(hydroxymethyl)acetamide (model molecule of ceramide) dimers have been fully optimized at B3LYP/6–311++G** level. The intermolecular hydrogen bonding interaction energies have been calculated using the B3LYP/6–311++G**, B3LYP/6–311++G(2df,2p), MP2(full)/6–311++G** and MP2(full)/6–311++G(2df,2p) methods, respectively. The results show that the O–H···O, N–H···O, O–H···N, and C–H···O hydrogen bonding interactions could exist in N-(hydroxymethyl)acetamide dimers, and the O–H···O, N–H···O, and O–H···N hydrogen bonding interactions could be stronger than C–H···O. The three-dimensional network structure formed by ceramide molecules through intermolecular hydrogen bonding interactions may be the main reason why the stratum corneum of skin could prevent foreign substances from entering our body, as is in accordance with the experimental results. The stability of hydrogen-bonding interactions follow the order of (a) > (b) ≈ (c) > (d) > (e) ≈ (f) > (g) > (h). The analyses of the energy decomposition, frequency, atoms in molecules (AIM), natural bond orbital (NBO), and electron density shift are used to further reveal the nature of the complex formation. In the range of 263.0–328.0 K, the complex is formed via an exothermic reaction, and the solvent with lower temperature and dielectric constant is favorable to this process.

Journal

Journal of Molecular ModelingSpringer Journals

Published: May 31, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off