Theoretical evaluation of triazine derivatives as steel corrosion inhibitors: DFT and Monte Carlo simulation approaches

Theoretical evaluation of triazine derivatives as steel corrosion inhibitors: DFT and Monte Carlo... Density functional theory (DFT) calculations and atomistic Monte Carlo simulations were performed on hexahydro-1,3,5-triphenyl-s-triazine (Inh1), hexahydro-1,3,5-p-tolyl-s-triazine (Inh2), hexahydro-1,3,5-p-methoxyphenyl-s-triazine (Inh3), hexahydro-1,3,5-p-aminophenyl-s-triazine (Inh4), hexahydro-1,3,5-p-nitrophenyl-s-triazine (Inh5) molecules in order to study their reactivity and adsorption behaviour towards steel corrosion. DFT results indicate that the active sites of the molecules were mainly located on the N atoms of the triazine ring and on the aromatic rings containing substituted polar groups. Monte Carlo simulations were applied to search for the most stable configuration for the adsorption of the inhibitor molecules on Fe(110) surface both in vacuum and in aqueous solution. The investigated molecules exhibited strong interactions with iron surface. In aqueous solution all the investigated molecules displaced water molecules and were strongly attracted to the Fe surface as evident in their large negative adsorption energies compared to that in vacuum. The DFT reactivity indicators as well as the adsorption strength from the outputs of Monte Carlo simulations of the studied molecules on Fe(110) surface in vacuum and in the presence of water follow the trend: Inh4 > Inh3 > Inh2 > Inh1 > Inh5. The theoretical data obtained are in good agreement with the experimental inhibition efficiency results earlier reported. Research on Chemical Intermediates Springer Journals

Theoretical evaluation of triazine derivatives as steel corrosion inhibitors: DFT and Monte Carlo simulation approaches

Loading next page...
Springer Netherlands
Copyright © 2015 by Springer Science+Business Media Dordrecht
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial