Theoretical calculations and experimental data on spectral, kinetic and thermodynamic properties of Se∴N and S∴N three-electron-bonded, structurally stabilized σ2σ* radicals

Theoretical calculations and experimental data on spectral, kinetic and thermodynamic properties... A complementary quantum mechanical and experimental study has been undertaken on the reactivity, formation and properties of Se∴N and S∴N σ2/σ* three-electron-bonded radical species, generated upon one-electron oxidation of selenomethionine, methionine and structurally related compounds. The quantum chemical calculations were based on density functional theory (DFT) hybrid B3LYP and BHandHLYP methods with basis sets ranging from 6-31G(d) to 6-311+G(d,p). Solvent effects, which play an important role concerning structure and energy of ground and excited states, were taken into account as dielectric continuum as well as explicit water molecules. They fully confirm new and previously obtained experimental results concerning the Vis/near-UV absorptions and thermodynamic stability. Special emphasis was put on a comparison between selenium and sulfur. The calculations clearly confirm the higher thermodynamic stability of the Se∴N radical species relative to the S∴N ones, and also corroborate the observed much higher kinetic stability of the former. Concerning optical absorptions, the calculations predict the Se∴N transients to exhibit a blue-shift by about 20 nm relative to the S-based analogues, confirming the few experimental data available so far. The theoretical study includes a comparison of various calculation levels and the influence of the solvent environment, by comparison with vacuum. New experimental data within the scope of this study have been obtained on intramolecularly-formed S∴N radical cation moieties, structurally stabilized by a rigid norbornane backbone. The methionine-related species, with an endo-2-amino, exo-2-carboxyl, and endo-6 methylthio substitution, for example, exhibits almost identical optical and kinetic stability properties as the corresponding species from free methionine. Its optical absorption depends on the protonation state of the carboxyl group, with λmax at 410 nm for the carboxylate (zwitterionic) form and at 390 nm for the overall cationic form with the protonated carboxyl group. The fast exponential decays with t 1/2 of 490 ns and 2 μs pertain to the decarboxylation of the respective species. A much longer-lived S∴N species with t 1/2 > 500 μs and second order decay kinetics (λmax 465 nm) was obtained from an endo-2-cyclohexylamino norbornane analogue which does not carry a carboxyl group. The methionine-based S∴N species is not stable anymore in vacuum and in low polarity solvents. This is explained by a decrease in stabilization energy of the 3-e-bond and a faster electron transfer from the carboxylate into the cationic 3-e-center. In conclusion, selenium enhances the thermodynamic and kinetic stability of its radical transients, relative to the sulfur analogues. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Theoretical calculations and experimental data on spectral, kinetic and thermodynamic properties of Se∴N and S∴N three-electron-bonded, structurally stabilized σ2σ* radicals

Loading next page...
 
/lp/springer_journal/theoretical-calculations-and-experimental-data-on-spectral-kinetic-and-6UY5ZZMTdN
Publisher
Springer Netherlands
Copyright
Copyright © 2009 by Springer Science+Business Media BV
Subject
Chemistry; Inorganic Chemistry ; Physical Chemistry ; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-009-0045-5
Publisher site
See Article on Publisher Site

Abstract

A complementary quantum mechanical and experimental study has been undertaken on the reactivity, formation and properties of Se∴N and S∴N σ2/σ* three-electron-bonded radical species, generated upon one-electron oxidation of selenomethionine, methionine and structurally related compounds. The quantum chemical calculations were based on density functional theory (DFT) hybrid B3LYP and BHandHLYP methods with basis sets ranging from 6-31G(d) to 6-311+G(d,p). Solvent effects, which play an important role concerning structure and energy of ground and excited states, were taken into account as dielectric continuum as well as explicit water molecules. They fully confirm new and previously obtained experimental results concerning the Vis/near-UV absorptions and thermodynamic stability. Special emphasis was put on a comparison between selenium and sulfur. The calculations clearly confirm the higher thermodynamic stability of the Se∴N radical species relative to the S∴N ones, and also corroborate the observed much higher kinetic stability of the former. Concerning optical absorptions, the calculations predict the Se∴N transients to exhibit a blue-shift by about 20 nm relative to the S-based analogues, confirming the few experimental data available so far. The theoretical study includes a comparison of various calculation levels and the influence of the solvent environment, by comparison with vacuum. New experimental data within the scope of this study have been obtained on intramolecularly-formed S∴N radical cation moieties, structurally stabilized by a rigid norbornane backbone. The methionine-related species, with an endo-2-amino, exo-2-carboxyl, and endo-6 methylthio substitution, for example, exhibits almost identical optical and kinetic stability properties as the corresponding species from free methionine. Its optical absorption depends on the protonation state of the carboxyl group, with λmax at 410 nm for the carboxylate (zwitterionic) form and at 390 nm for the overall cationic form with the protonated carboxyl group. The fast exponential decays with t 1/2 of 490 ns and 2 μs pertain to the decarboxylation of the respective species. A much longer-lived S∴N species with t 1/2 > 500 μs and second order decay kinetics (λmax 465 nm) was obtained from an endo-2-cyclohexylamino norbornane analogue which does not carry a carboxyl group. The methionine-based S∴N species is not stable anymore in vacuum and in low polarity solvents. This is explained by a decrease in stabilization energy of the 3-e-bond and a faster electron transfer from the carboxylate into the cationic 3-e-center. In conclusion, selenium enhances the thermodynamic and kinetic stability of its radical transients, relative to the sulfur analogues.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jun 9, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off