Theoretical and applied aspects of epigenetic reprogramming in mammalian development

Theoretical and applied aspects of epigenetic reprogramming in mammalian development Epigenetic reprogramming implies changes in germ and somatic cells of an embryo, which are the consequences of gene activity regulation by means of DNA methylation, histone modification, and altered chromatin compaction. This suggests that epigenetic changes in mammalian cell nucleus occur during gametogenesis and totipotent zygote formation. Epigenetic changes proceed during morphological and inductive interactions between cleaving blastomeres and subsequent interactions between the inner cell contents and trophoectoderm, as well as when the germinal layers (blastophyllums) and their derivatives appear, i.e., during the embryonic histogenesis [1]. Some authors [2–4] assume that in vitro fertilization and consequent human zygote cultivation lead to defects of genomic imprinting [2–4]. This leads to abnormal embryonic and fetal development and increased incidence of hereditary diseases—Beckwith-Wiederman or Angelman syndromes. The present review, critically considers the facts on which the above hypothesis is based. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Theoretical and applied aspects of epigenetic reprogramming in mammalian development

Loading next page...
 
/lp/springer_journal/theoretical-and-applied-aspects-of-epigenetic-reprogramming-in-5B10SoT9Li
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2006 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Microbial Genetics and Genomics; Animal Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795406120027
Publisher site
See Article on Publisher Site

Abstract

Epigenetic reprogramming implies changes in germ and somatic cells of an embryo, which are the consequences of gene activity regulation by means of DNA methylation, histone modification, and altered chromatin compaction. This suggests that epigenetic changes in mammalian cell nucleus occur during gametogenesis and totipotent zygote formation. Epigenetic changes proceed during morphological and inductive interactions between cleaving blastomeres and subsequent interactions between the inner cell contents and trophoectoderm, as well as when the germinal layers (blastophyllums) and their derivatives appear, i.e., during the embryonic histogenesis [1]. Some authors [2–4] assume that in vitro fertilization and consequent human zygote cultivation lead to defects of genomic imprinting [2–4]. This leads to abnormal embryonic and fetal development and increased incidence of hereditary diseases—Beckwith-Wiederman or Angelman syndromes. The present review, critically considers the facts on which the above hypothesis is based.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Dec 17, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off