Thematic content analysis using supervised machine learning: An empirical evaluation using German online news

Thematic content analysis using supervised machine learning: An empirical evaluation using German... In recent years, two approaches to automatic content analysis have been introduced in the social sciences: semantic network analysis and supervised text classification. We argue that, although less linguistically sophisticated than semantic parsing techniques, statistical machine learning offers many advantages for applied communication research. By using manually coded material for training, supervised classification seamlessly bridges the gap between traditional and automatic content analysis. In this paper, we briefly introduce the conceptual foundations of machine learning approaches to text classification and discuss their application in social science research. We then evaluate their potential in an experimental study in which German online news was coded with established thematic categories. Moreover, we investigate whether and how linguistic preprocessing can improve classification quality. Results indicate that supervised text classification is generally robust and reliable for some categories, but may even be useful when it fails. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quality & Quantity Springer Journals

Thematic content analysis using supervised machine learning: An empirical evaluation using German online news

Loading next page...
 
/lp/springer_journal/thematic-content-analysis-using-supervised-machine-learning-an-tIPuMuGljZ
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Social Sciences, general; Methodology of the Social Sciences; Social Sciences, general
ISSN
0033-5177
eISSN
1573-7845
D.O.I.
10.1007/s11135-011-9545-7
Publisher site
See Article on Publisher Site

Abstract

In recent years, two approaches to automatic content analysis have been introduced in the social sciences: semantic network analysis and supervised text classification. We argue that, although less linguistically sophisticated than semantic parsing techniques, statistical machine learning offers many advantages for applied communication research. By using manually coded material for training, supervised classification seamlessly bridges the gap between traditional and automatic content analysis. In this paper, we briefly introduce the conceptual foundations of machine learning approaches to text classification and discuss their application in social science research. We then evaluate their potential in an experimental study in which German online news was coded with established thematic categories. Moreover, we investigate whether and how linguistic preprocessing can improve classification quality. Results indicate that supervised text classification is generally robust and reliable for some categories, but may even be useful when it fails.

Journal

Quality & QuantitySpringer Journals

Published: Jul 28, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off