The yeast two-hybrid and related methods as powerful tools to study plant cell signalling

The yeast two-hybrid and related methods as powerful tools to study plant cell signalling One basic property of proteins is their ability to specifically target and form non-covalent complexes with other proteins. Such protein–protein interactions play key roles in all biological processes, extending from the formation of cellular macromolecular structures and enzymatic complexes to the regulation of signal transduction pathways. Identifying and characterizing protein interactions and entire interaction networks (interactomes) is therefore prerequisite to understand these processes on a molecular and biophysical level. Since its original description in 1989, the yeast two-hybrid system has been extensively used to identify protein–protein interactions from many different organisms, thus providing a convenient mean to both screen for proteins that interact with a protein of interest and to characterize the known interaction between two proteins. In these years the technique has improved to overcome the limitations of the original assay, and many efforts have been made to scale up the technique and to adapt it to large scale studies. In addition, variations have been introduced to enlarge the range of proteins and interactors that can be assayed by hybrid-based approaches. Several groups studying molecular mechanisms that underlie plant cell signal transduction pathways have successfully used the yeast two-hybrid system or related methods. In this review we provide a brief description of the technology, attempt to point out some of the pitfalls and benefits of the different systems that can be employed, and mention some of the areas, within the plant cell signalling field, where hybrid-based interaction assays have been particularly informative. Plant Molecular Biology Springer Journals

The yeast two-hybrid and related methods as powerful tools to study plant cell signalling

Loading next page...
Springer Netherlands
Copyright © 2013 by Springer Science+Business Media Dordrecht
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial