The variant cycle-cover problem in fault detection and localization for mesh all-optical networks

The variant cycle-cover problem in fault detection and localization for mesh all-optical networks With the soaring channel speed and density in all-optical networks (AONs), the risk of high data loss upon network faults increases quickly. To manage network faults efficiently, an m-cycle based fault detection and localization (MFDL) scheme has been introduced recently. This paper verifies the necessary and sufficient condition for achieving the complete fault localization (CFL) in MFDL, which is defined as the case that every single network fault can be located to a unique link. We model the m-cycle construction as a new mathematical problem: the variant version of the constrained cycle-cover problem (vCCCP) and explore its formal expression. The model includes the consideration of the cycle-length limit, cycle number, and wavelength cost, while also keeps the CFL achievable. A two-phase branch-and-bound (B&B) algorithm was developed for solving the vCCCP, which guarantees to find near-optimal solutions. This algorithm is then applied to four typical and four random network examples to validate and assess the performance. The results are analyzed and compared with some previously reported algorithms, in terms of fault localization degree, cycle number, wavelength overhead, and cost reduction. The performance evaluation and comparison reveal that the new model and algorithm could significantly reduce the MFDL cost, including both the cost of monitoring devices and reserved wavelengths. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

The variant cycle-cover problem in fault detection and localization for mesh all-optical networks

Loading next page...
 
/lp/springer_journal/the-variant-cycle-cover-problem-in-fault-detection-and-localization-4jaKwAXfu1
Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-007-0058-1
Publisher site
See Article on Publisher Site

Abstract

With the soaring channel speed and density in all-optical networks (AONs), the risk of high data loss upon network faults increases quickly. To manage network faults efficiently, an m-cycle based fault detection and localization (MFDL) scheme has been introduced recently. This paper verifies the necessary and sufficient condition for achieving the complete fault localization (CFL) in MFDL, which is defined as the case that every single network fault can be located to a unique link. We model the m-cycle construction as a new mathematical problem: the variant version of the constrained cycle-cover problem (vCCCP) and explore its formal expression. The model includes the consideration of the cycle-length limit, cycle number, and wavelength cost, while also keeps the CFL achievable. A two-phase branch-and-bound (B&B) algorithm was developed for solving the vCCCP, which guarantees to find near-optimal solutions. This algorithm is then applied to four typical and four random network examples to validate and assess the performance. The results are analyzed and compared with some previously reported algorithms, in terms of fault localization degree, cycle number, wavelength overhead, and cost reduction. The performance evaluation and comparison reveal that the new model and algorithm could significantly reduce the MFDL cost, including both the cost of monitoring devices and reserved wavelengths.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Jun 16, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off