The value of wetlands for water quality improvement: an example from the St. Johns River watershed, Florida

The value of wetlands for water quality improvement: an example from the St. Johns River... Wetlands provide many valuable ecosystem functions such as sediment and nutrient retention, high biological productivity and biodiversity, flood control, and opportunities to recreate. Despite their importance, estimating the value of wetlands is difficult as the worth of these functions and services is not easily quantified. The overall objective of this study was to estimate the value of freshwater wetlands in the Saint Johns River (SJR) watershed, Florida based on their ability to remove nutrients, namely nitrogen (N) and phosphorus (P). We used a combination of literature review, geospatial analysis of land cover, and regression analysis to determine the total wetland area in the SJR watershed and the rates of nitrogen and phosphorus burial in the wetlands. We then estimated the economic value of these wetlands based on the replacement cost of nutrient removal by wastewater treatment plants. Nitrogen burial rates ranged from 27 g/m2/year to a background rate of 6.56 g/m2/year, and phosphorus burial rates range from 1.31 g/m2/year to a background of 0.11 g/m2/year. Using these rates, we calculate wetlands of the SJR catchment remove 79,873 MT of nitrogen annually just from burial in the soil, with a replacement cost of between $240 million to $150 billion per year. The amount of phosphorus buried yearly is more than 2400 MT with an annual replacement cost of $17 to $497 million. Though they are based on limited data and include a variety of watershed-scale research limitations, these findings highlight the significant potential value of conserving functional wetlands based solely on their nutrient retention functions. If we were to consider the benefits associated with other wetland functions such as flood control, biological productivity, and biodiversity in addition to their ability to retain nutrients, the value of the SJR wetlands would be even greater. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wetlands Ecology and Management Springer Journals

The value of wetlands for water quality improvement: an example from the St. Johns River watershed, Florida

Loading next page...
 
/lp/springer_journal/the-value-of-wetlands-for-water-quality-improvement-an-example-from-lVj796Q6Ox
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Life Sciences; Freshwater & Marine Ecology; Conservation Biology/Ecology; Environmental Law/Policy/Ecojustice; Marine & Freshwater Sciences; Hydrology/Water Resources; Water Quality/Water Pollution
ISSN
0923-4861
eISSN
1572-9834
D.O.I.
10.1007/s11273-017-9569-4
Publisher site
See Article on Publisher Site

Abstract

Wetlands provide many valuable ecosystem functions such as sediment and nutrient retention, high biological productivity and biodiversity, flood control, and opportunities to recreate. Despite their importance, estimating the value of wetlands is difficult as the worth of these functions and services is not easily quantified. The overall objective of this study was to estimate the value of freshwater wetlands in the Saint Johns River (SJR) watershed, Florida based on their ability to remove nutrients, namely nitrogen (N) and phosphorus (P). We used a combination of literature review, geospatial analysis of land cover, and regression analysis to determine the total wetland area in the SJR watershed and the rates of nitrogen and phosphorus burial in the wetlands. We then estimated the economic value of these wetlands based on the replacement cost of nutrient removal by wastewater treatment plants. Nitrogen burial rates ranged from 27 g/m2/year to a background rate of 6.56 g/m2/year, and phosphorus burial rates range from 1.31 g/m2/year to a background of 0.11 g/m2/year. Using these rates, we calculate wetlands of the SJR catchment remove 79,873 MT of nitrogen annually just from burial in the soil, with a replacement cost of between $240 million to $150 billion per year. The amount of phosphorus buried yearly is more than 2400 MT with an annual replacement cost of $17 to $497 million. Though they are based on limited data and include a variety of watershed-scale research limitations, these findings highlight the significant potential value of conserving functional wetlands based solely on their nutrient retention functions. If we were to consider the benefits associated with other wetland functions such as flood control, biological productivity, and biodiversity in addition to their ability to retain nutrients, the value of the SJR wetlands would be even greater.

Journal

Wetlands Ecology and ManagementSpringer Journals

Published: Aug 28, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off