The unique role of the hepatitis virus B X protein on HEK 293 cell morphology and cellular change

The unique role of the hepatitis virus B X protein on HEK 293 cell morphology and cellular change The function of the hepatitis B virus X protein (HBx) has been investigated in hepatoma cell lines before; however, its function in the canonical HEK 293 cell line has not been addressed. In this study, we found that HBx increased cellular interaction by fusing the gap between HEK 293 cells, which is different from what has been reported previously. We also found that HBx enhanced the expression of E-cadherin in hepatoma cell lines instead of decreasing it as reported previously. The increase in E-cadherin was mediated by the enhanced levels of Src, which also differs from previous reports. Finally, we observed that HBx can accelerate cell growth by increasing the percentage of cells that are positioned at the division stage. Further analysis showed that the increased growth was caused by increased CDK4 expression and Ki67 + populations. Additionally, reduced apoptosis was found in HEK 293 cells expressing HBx due to an increase in the anti-apoptotic protein-Bcl2. Collectively, the different functions of HBx in HEK 293 cells suggest that its role is cell dependent. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

The unique role of the hepatitis virus B X protein on HEK 293 cell morphology and cellular change

Loading next page...
 
/lp/springer_journal/the-unique-role-of-the-hepatitis-virus-b-x-protein-on-hek-293-cell-0n0G92eHz0
Publisher
Springer Vienna
Copyright
Copyright © 2016 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-016-2786-y
Publisher site
See Article on Publisher Site

Abstract

The function of the hepatitis B virus X protein (HBx) has been investigated in hepatoma cell lines before; however, its function in the canonical HEK 293 cell line has not been addressed. In this study, we found that HBx increased cellular interaction by fusing the gap between HEK 293 cells, which is different from what has been reported previously. We also found that HBx enhanced the expression of E-cadherin in hepatoma cell lines instead of decreasing it as reported previously. The increase in E-cadherin was mediated by the enhanced levels of Src, which also differs from previous reports. Finally, we observed that HBx can accelerate cell growth by increasing the percentage of cells that are positioned at the division stage. Further analysis showed that the increased growth was caused by increased CDK4 expression and Ki67 + populations. Additionally, reduced apoptosis was found in HEK 293 cells expressing HBx due to an increase in the anti-apoptotic protein-Bcl2. Collectively, the different functions of HBx in HEK 293 cells suggest that its role is cell dependent.

Journal

Archives of VirologySpringer Journals

Published: May 1, 2016

References

  • Hepatitis B virus replication
    Beck, J; Nassal, M
  • Hepatitis B virus genetic variability and evolution
    Kay, A; Zoulim, F
  • Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl
    Martin, SJ; Reutelingsperger, CP; McGahon, AJ; Rader, JA; Schie, RC; LaFace, DM; Green, DR

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off