The unified ICE–CBF pathway provides a transcriptional feedback control of freezing tolerance during cold acclimation in Arabidopsis

The unified ICE–CBF pathway provides a transcriptional feedback control of freezing tolerance... During cold acclimation, C-repeat binding factors (CBFs) activate downstream targets, such as cold-regulated genes, leading to the acquisition of freezing tolerance in plants. Inducer of CBF expression 1 (ICE1) plays a key role by activating CBF3 expression in shaping the cold-induced transcriptome. While the ICE1–CBF3 regulon constitutes a major cold acclimation pathway, gene regulatory networks governing the CBF signaling are poorly understood. Here, we demonstrated that ICE1 and its paralog ICE2 induce CBF1, CBF2, and CBF3 by binding to the gene promoters. ICE2, like ICE1, was ubiquitinated by the high expression of osmotically responsive gene 1 (HOS1) E3 ubiquitin ligase. Whereas ICE2-defective ice2-2 mutant did not exhibit any discernible freezing-sensitive phenotypes, ice1-2 ice2-2/+ plant, which is defective in ICE1 and has a heterozygotic ice2 mutation, exhibited significantly reduced freezing tolerance. Accordingly, all three CBF genes were markedly down-regulated in the ice1-2 ice2-2/+ plant, indicating that ICE1 and ICE2 are functionally redundant with different implementations in inducing CBF genes. Together with the negative regulation of CBF3 by CBF2, we propose that the unified ICE–CBF pathway provides a transcriptional feedback of freezing tolerance to sustain plant development and survival during cold acclimation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

The unified ICE–CBF pathway provides a transcriptional feedback control of freezing tolerance during cold acclimation in Arabidopsis

Loading next page...
 
/lp/springer_journal/the-unified-ice-cbf-pathway-provides-a-transcriptional-feedback-Y4F9KOuAQE
Publisher
Springer Journals
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-015-0365-3
Publisher site
See Article on Publisher Site

Abstract

During cold acclimation, C-repeat binding factors (CBFs) activate downstream targets, such as cold-regulated genes, leading to the acquisition of freezing tolerance in plants. Inducer of CBF expression 1 (ICE1) plays a key role by activating CBF3 expression in shaping the cold-induced transcriptome. While the ICE1–CBF3 regulon constitutes a major cold acclimation pathway, gene regulatory networks governing the CBF signaling are poorly understood. Here, we demonstrated that ICE1 and its paralog ICE2 induce CBF1, CBF2, and CBF3 by binding to the gene promoters. ICE2, like ICE1, was ubiquitinated by the high expression of osmotically responsive gene 1 (HOS1) E3 ubiquitin ligase. Whereas ICE2-defective ice2-2 mutant did not exhibit any discernible freezing-sensitive phenotypes, ice1-2 ice2-2/+ plant, which is defective in ICE1 and has a heterozygotic ice2 mutation, exhibited significantly reduced freezing tolerance. Accordingly, all three CBF genes were markedly down-regulated in the ice1-2 ice2-2/+ plant, indicating that ICE1 and ICE2 are functionally redundant with different implementations in inducing CBF genes. Together with the negative regulation of CBF3 by CBF2, we propose that the unified ICE–CBF pathway provides a transcriptional feedback of freezing tolerance to sustain plant development and survival during cold acclimation.

Journal

Plant Molecular BiologySpringer Journals

Published: Aug 27, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off