The UMP Exact Test and the Confidence Interval for Person Parameters in IRT Models

The UMP Exact Test and the Confidence Interval for Person Parameters in IRT Models In educational and psychological measurement when short test forms are used, the asymptotic normality of the maximum likelihood estimator of the person parameter of item response models does not hold. As a result, hypothesis tests or confidence intervals of the person parameter based on the normal distribution are likely to be problematic. Inferences based on the exact distribution, on the other hand, do not suffer from this limitation. However, the computation involved for the exact distribution approach is often prohibitively expensive. In this paper, we propose a general framework for constructing hypothesis tests and confidence intervals for IRT models within the exponential family based on exact distribution. In addition, an efficient branch and bound algorithm for calculating the exact p value is introduced. The type-I error rate and statistical power of the proposed exact test as well as the coverage rate and the lengths of the associated confidence interval are examined through a simulation. We also demonstrate its practical use by analyzing three real data sets. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Psychometrika Springer Journals

The UMP Exact Test and the Confidence Interval for Person Parameters in IRT Models

Loading next page...
 
/lp/springer_journal/the-ump-exact-test-and-the-confidence-interval-for-person-parameters-PVH0j0N6SO
Publisher
Springer US
Copyright
Copyright © 2017 by The Psychometric Society
Subject
Psychology; Psychometrics; Assessment, Testing and Evaluation; Statistics for Social Science, Behavorial Science, Education, Public Policy, and Law; Statistical Theory and Methods
ISSN
0033-3123
eISSN
1860-0980
D.O.I.
10.1007/s11336-017-9580-y
Publisher site
See Article on Publisher Site

Abstract

In educational and psychological measurement when short test forms are used, the asymptotic normality of the maximum likelihood estimator of the person parameter of item response models does not hold. As a result, hypothesis tests or confidence intervals of the person parameter based on the normal distribution are likely to be problematic. Inferences based on the exact distribution, on the other hand, do not suffer from this limitation. However, the computation involved for the exact distribution approach is often prohibitively expensive. In this paper, we propose a general framework for constructing hypothesis tests and confidence intervals for IRT models within the exponential family based on exact distribution. In addition, an efficient branch and bound algorithm for calculating the exact p value is introduced. The type-I error rate and statistical power of the proposed exact test as well as the coverage rate and the lengths of the associated confidence interval are examined through a simulation. We also demonstrate its practical use by analyzing three real data sets.

Journal

PsychometrikaSpringer Journals

Published: Aug 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off