The two endo-β-N-acetylglucosaminidase genes from Arabidopsis thaliana encode cytoplasmic enzymes controlling free N-glycan levels

The two endo-β-N-acetylglucosaminidase genes from Arabidopsis thaliana encode cytoplasmic... Endo-β-N-acetylglucosaminidases (ENGases) cleave N-glycans from proteins and/or peptides by hydrolyzing the O-glycosidic linkage between the two core-N-acetylglucosamine (GlcNAc) residues. Although, two homologous genes potentially encoding ENGases have been identified in Arabidopsis thaliana, their respective substrate specificity, their subcellular and their organ specific localization was hitherto unknown. In order to investigate the role of ENGases in this model plant species, we transiently expressed the two A. thaliana genes in Nicotiana benthamiana and determined the substrate specificities, as well as the Km values, of the purified recombinant enzymes. The assumed predominantly cytosolic localisation of both enzymes, here referred to as AtENGase85A and AtENGase85B, was determined by confocal microscopy of plant leaves expressing the respective GFP-fusion constructs. For the individual characterization of the two enzymes expression patterns in planta, single knock-out plants were selected for both genes. Although both enzymes are present in most organs, only AtENGase85A (At5g05460) was expressed in stems and no ENGase activity was detected in siliques. A double knock-out was generated by crossing but—like single knock-out plants—no apparent phenotype was observed. In contrast, in this double knock-out, free N-glycans carrying a single GlcNAc at the reducing end are completely absent and their counterparts with two GlcNAc—visible only at a trace level in wild type—accumulated dramatically. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

The two endo-β-N-acetylglucosaminidase genes from Arabidopsis thaliana encode cytoplasmic enzymes controlling free N-glycan levels

Loading next page...
 
/lp/springer_journal/the-two-endo-n-acetylglucosaminidase-genes-from-arabidopsis-thaliana-o6SVmuus0k
Publisher
Springer Netherlands
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-011-9808-7
Publisher site
See Article on Publisher Site

Abstract

Endo-β-N-acetylglucosaminidases (ENGases) cleave N-glycans from proteins and/or peptides by hydrolyzing the O-glycosidic linkage between the two core-N-acetylglucosamine (GlcNAc) residues. Although, two homologous genes potentially encoding ENGases have been identified in Arabidopsis thaliana, their respective substrate specificity, their subcellular and their organ specific localization was hitherto unknown. In order to investigate the role of ENGases in this model plant species, we transiently expressed the two A. thaliana genes in Nicotiana benthamiana and determined the substrate specificities, as well as the Km values, of the purified recombinant enzymes. The assumed predominantly cytosolic localisation of both enzymes, here referred to as AtENGase85A and AtENGase85B, was determined by confocal microscopy of plant leaves expressing the respective GFP-fusion constructs. For the individual characterization of the two enzymes expression patterns in planta, single knock-out plants were selected for both genes. Although both enzymes are present in most organs, only AtENGase85A (At5g05460) was expressed in stems and no ENGase activity was detected in siliques. A double knock-out was generated by crossing but—like single knock-out plants—no apparent phenotype was observed. In contrast, in this double knock-out, free N-glycans carrying a single GlcNAc at the reducing end are completely absent and their counterparts with two GlcNAc—visible only at a trace level in wild type—accumulated dramatically.

Journal

Plant Molecular BiologySpringer Journals

Published: Jul 28, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off